Inelastic effects in molecular junction transport: scattering and self-consistent calculations for the Seebeck coefficient

The influence of molecular vibration on the Seebeck coefficient is studied within a simple model. Results of a scattering theory approach are compared with those of a full self-consistent non-equilibrium Green's function scheme. We show, for a reasonable choice of parameters, that inelastic effects have a non-negligible influence on the resulting Seebeck coefficient for the junction. We note that the scattering theory approach may fail both quantitatively and qualitatively. The results of calculations with reasonable parameters are in good agreement with recent measurements [Science 315, 1568 (2007)].

[1]  D. Vuillaume Molecular Nanoelectronics , 2010, Proceedings of the IEEE.

[2]  Arun Majumdar,et al.  Thermoelectricity in Molecular Junctions , 2007, Science.

[3]  M. Ratner,et al.  Heat conduction in molecular transport junctions , 2006, cond-mat/0611169.

[4]  M. Ratner,et al.  Resonant inelastic tunneling in molecular junctions , 2005, cond-mat/0510452.

[5]  D. Segal Thermoelectric effect in molecular junctions: A tool for revealing transport mechanisms , 2005, cond-mat/0510264.

[6]  K. Walczak Thermoelectric properties of vibrating molecule asymmetrically connected to the electrodes , 2005, cond-mat/0509410.

[7]  M. Ratner,et al.  Molecular electronics , 2005 .

[8]  A. Nitzan,et al.  Heat rectification in molecular junctions. , 2005, The Journal of chemical physics.

[9]  Enrique Maciá,et al.  Thermoelectric power and electrical conductance of DNA based molecular junctions , 2005 .

[10]  J. Kong,et al.  Electrical generation and absorption of phonons in carbon nanotubes , 2004, Nature.

[11]  Mohamed A. Osman,et al.  Thermal conductivity of Y-junction carbon nanotubes , 2004 .

[12]  A. Nitzan,et al.  Spin-boson thermal rectifier. , 2004, Physical review letters.

[13]  M. Ratner,et al.  Inelastic electron tunneling spectroscopy in molecular junctions: peaks and dips. , 2004, The Journal of chemical physics.

[14]  Hartmut Haug,et al.  Quantum Kinetics in Transport and Optics of Semiconductors , 2004 .

[15]  A. Millis,et al.  Phonon effects in molecular transistors: Quantal and classical treatment , 2003, cond-mat/0311503.

[16]  A. Nitzan,et al.  Thermal conductance through molecular wires , 2003, physics/0306187.

[17]  M. Ratner,et al.  Electron Transport in Molecular Wire Junctions , 2003, Science.

[18]  Mark A. Reed and Takhee Lee,et al.  Molecular Nanoelectronics , 2003 .

[19]  James M. Tour,et al.  Molecular Electronics: Commercial Insights, Chemistry, Devices, Architecture, and Programming , 2003 .

[20]  M. Zwolak,et al.  Local Heating in Nanoscale Conductors , 2003, cond-mat/0302425.

[21]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[22]  S. Datta,et al.  Thermoelectric effect in molecular electronics , 2003, cond-mat/0301232.

[23]  G. Kotliar,et al.  Thermal transport for many-body tight-binding models , 2002, cond-mat/0211538.

[24]  A. Sutton,et al.  Power dissipation in nanoscale conductors , 2002 .

[25]  A. Majumdar,et al.  Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures , 2002 .

[26]  A. Majumdar,et al.  Thermal Transport Mechanisms at Nanoscale Point Contacts , 2002 .

[27]  N. Agraït,et al.  Onset of energy dissipation in ballistic atomic wires. , 2001, Physical review letters.

[28]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical review letters.

[29]  J. Gilman,et al.  Nanotechnology , 2001 .

[30]  M. Geller,et al.  Thermal transport through a mesoscopic weak link , 2001, cond-mat/0101045.

[31]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[32]  Bo N. J. Persson,et al.  Local bond breaking via STM-induced excitations: the role of temperature , 1997 .

[33]  E. Cox,et al.  Scanning thermopower microscopy of guanine monolayers , 1995 .

[34]  Meir,et al.  Landauer formula for the current through an interacting electron region. , 1992, Physical review letters.

[35]  P. N. Butcher Thermal and electrical transport formalism for electronic microstructures with many terminals , 1990 .

[36]  P. Wyder,et al.  Temperature dependence of point-contact spectroscopy in copper , 1980 .

[37]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[38]  K. Richter,et al.  Introducing Molecular Electronics , 2005 .

[39]  P. Rennert,et al.  Many‐particle Physics , 1982 .

[40]  D. Haar,et al.  Statistical Physics , 1971, Nature.

[41]  G. D. Parfitt,et al.  Surface Science , 1965, Nature.

[42]  L. Landau,et al.  statistical-physics-part-1 , 1958 .