Proof complexity and the binary encoding of combinatorial principles

We consider Proof Complexity in light of the unusual binary encoding of certain combinatorial principles. We contrast this Proof Complexity with the normal unary encoding in several refutation systems, based on Resolution and Integer Linear Programming. Please consult the article for the full abstract.

[1]  Ralph E. Gomory,et al.  Solving linear programming problems in integers , 1960 .

[2]  Toby Walsh,et al.  SAT v CSP , 2000, CP.

[3]  Russell Impagliazzo,et al.  Resolution complexity of independent sets in random graphs , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[4]  Albert Atserias Improved Bounds on the Weak Pigeonhole Principle and Infinitely Many Primes from Weaker Axioms , 2001, MFCS.

[5]  Toniann Pitassi,et al.  A new proof of the weak pigeonhole principle , 2000, STOC '00.

[6]  Søren Riis,et al.  Tree resolution proofs of the weak pigeon-hole principle , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[7]  Eli Upfal,et al.  Probability and Computing: Randomized Algorithms and Probabilistic Analysis , 2005 .

[8]  Pavel Pudlák Proofs as Games , 2000, Am. Math. Mon..

[9]  Justyna Petke,et al.  Bridging Constraint Satisfaction and Boolean Satisfiability , 2015, Artificial Intelligence: Foundations, Theory, and Algorithms.

[10]  Michael Alekhnovich Lower Bounds for k-DNF Resolution on Random 3-CNFs , 2005, STOC '05.

[11]  Barnaby Martin,et al.  Rank complexity gap for Lovász-Schrijver and Sherali-Adams proof systems , 2012, computational complexity.

[12]  Mark Nicholas Charles Rhodes Rank Lower Bounds for the Sherali-Adams Operator , 2007, CiE.

[13]  Nicola Galesi,et al.  A Framework for Space Complexity in Algebraic Proof Systems , 2015, J. ACM.

[14]  Yuval Filmus,et al.  Space Complexity in Polynomial Calculus , 2012, 2012 IEEE 27th Conference on Computational Complexity.

[15]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[16]  Massimo Lauria,et al.  Optimality of size-degree tradeoffs for polynomial calculus , 2010, TOCL.

[17]  Pavel Pudlák,et al.  Random Formulas, Monotone Circuits, and Interpolation , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[18]  Massimo Lauria,et al.  Tight Size-Degree Bounds for Sums-of-Squares Proofs , 2017, computational complexity.

[19]  Søren Riis,et al.  On Relativisation and Complexity Gap , 2003, CSL.

[20]  Maria Luisa Bonet,et al.  Lower Bounds for the Weak Pigeonhole Principle and Random Formulas beyond Resolution , 2002, Inf. Comput..

[21]  P. Hall On Representatives of Subsets , 1935 .

[22]  Alexander A. Razborov,et al.  Clique is hard on average for regular resolution , 2018, STOC.

[23]  Dima Grigoriev,et al.  Complexity of Semi-algebraic Proofs , 2002, STACS.

[24]  Samuel R. Buss,et al.  Resolution and the Weak Pigeonhole Principle , 1997, CSL.

[25]  Monique Laurent,et al.  A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..

[26]  Vojtech Rödl,et al.  The complexity of proving that a graph is Ramsey , 2017, Comb..

[27]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[28]  Alexander A. Razborov,et al.  Pseudorandom generators hard for $k$-DNF resolution and polynomial calculus resolution , 2015 .

[29]  Alexander A. Razborov,et al.  Proof Complexity of Pigeonhole Principles , 2001, Developments in Language Theory.

[30]  Olaf Beyersdorff,et al.  Parameterized Complexity of DPLL Search Procedures , 2011, SAT.

[31]  David Steurer,et al.  Sum-of-squares proofs and the quest toward optimal algorithms , 2014, Electron. Colloquium Comput. Complex..

[32]  Balakrishnan Krishnamurthy Short proofs for tricky formulas , 2004, Acta Informatica.

[33]  Aaron Potechin Sum of squares bounds for the total ordering principle , 2018, ArXiv.

[34]  Oliver Kullmann,et al.  Investigating a general hierarchy of polynomially decidable classes of CNF's based on short tree-like resolution proofs , 1999, Electron. Colloquium Comput. Complex..

[35]  Neil Thapen,et al.  Total Space in Resolution , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[36]  Gunnar Stålmarck Short resolution proofs for a sequence of tricky formulas , 2009, Acta Informatica.

[37]  Jean B. Lasserre,et al.  An Explicit Exact SDP Relaxation for Nonlinear 0-1 Programs , 2001, IPCO.

[38]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[39]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[40]  Barnaby Martin,et al.  Tight rank lower bounds for the Sherali-Adams proof system , 2009, Theor. Comput. Sci..

[41]  Alexander A. Razborov,et al.  Electronic Colloquium on Computational Complexity, Report No. 75 (2001) Resolution Lower Bounds for the Weak Functional Pigeonhole Principle , 2001 .

[42]  Maria Luisa Bonet,et al.  Optimality of size-width tradeoffs for resolution , 2001, computational complexity.

[44]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[45]  Jan Krajícek,et al.  Bounded arithmetic, propositional logic, and complexity theory , 1995, Encyclopedia of mathematics and its applications.

[46]  Søren Riis A complexity gap for tree resolution , 2001, computational complexity.

[47]  Gihwon Kwon,et al.  Efficient CNF Encoding for Selecting 1 from N Objects , 2007 .

[48]  Jochen Messner,et al.  On Minimal Unsatisfiability and Time-Space Trade-offs for k-DNF Resolution , 2009, ICALP.

[49]  Alexander A. Razborov,et al.  Parameterized Bounded-Depth Frege Is not Optimal , 2011, TOCT.

[50]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[51]  Olaf Beyersdorff,et al.  A Lower Bound for the Pigeonhole Principle in Tree-like Resolution by Asymmetric Prover-Delayer Games , 2010, Electron. Colloquium Comput. Complex..

[52]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..

[53]  Samuel R. Buss,et al.  Switching lemma for small restrictions and lower bounds for k-DNF resolution , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[54]  Toniann Pitassi,et al.  Simplified and improved resolution lower bounds , 1996, Proceedings of 37th Conference on Foundations of Computer Science.