The Continuing Search for Evidence of Tidal Orbital Decay of Hot Jupiters

Many of the known hot Jupiters are formally unstable to tidal orbital decay. The only hot Jupiter for which orbital decay has been directly detected is WASP-12, for which transit-timing measurements spanning more than a decade have revealed that the orbital period is decreasing at a rate of , corresponding to a reduced tidal quality factor of about 2 × 105. Here, we present a compilation of transit-timing data for WASP-12 and 11 other systems that are especially favorable for detecting orbital decay: KELT-16; WASP-18, 19, 43, 72, 103, 114, and 122; HAT-P-23; HATS-18; and OGLE-TR-56. For most of these systems we present new data that extend the time baseline over which observations have been performed. None of the systems besides WASP-12 display convincing evidence for period changes, with typical upper limits on dP/dt on the order of 10−9 or 10−10, and lower limits on the reduced tidal quality factor on the order of 105. One possible exception is WASP-19, which shows a statistically significant trend, although it may be a spurious effect of starspot activity. Further observations are encouraged.

[1]  David J Armstrong,et al.  Discovery of Three New Transiting Hot Jupiters: WASP-161 b, WASP-163 b, and WASP-170 b , 2018, The Astronomical Journal.

[2]  M. Holman,et al.  The Apparently Decaying Orbit of WASP-12b , 2017, 1703.06582.

[3]  Saurabh Jha,et al.  New data and improved parameters for the extrasolar transiting planet OGLE-TR-56b , 2003 .

[4]  R. G. West,et al.  An orbital period of 0.94 days for the hot-Jupiter planet WASP-18b , 2009, Nature.

[5]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[6]  Andreas Seifahrt,et al.  TRANSMISSION SPECTROSCOPY OF THE HOT JUPITER WASP-12b FROM 0.7 TO 5 μm , 2013, 1305.1670.

[7]  M. Holman,et al.  IMPROVED SPECTROSCOPIC PARAMETERS FOR TRANSITING PLANET HOSTS , 2012, 1208.1268.

[8]  K. Antonyuk,et al.  THE POSSIBLE ORBITAL DECAY AND TRANSIT TIMING VARIATIONS OF THE PLANET WASP-43b , 2015, 1511.00768.

[9]  S. Teitler,et al.  WHY IS THERE A DEARTH OF CLOSE-IN PLANETS AROUND FAST-ROTATING STARS? , 2014, 1403.5860.

[10]  Avi Shporer,et al.  The Orbit of WASP-12b Is Decaying , 2019, The Astrophysical Journal.

[11]  J. Hagelberg,et al.  Signs of strong Na and K absorption in the transmission spectrum of WASP-103b , 2017, 1708.05737.

[12]  M. Holman,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 IMPROVED PARAMETERS FOR EXTRASOLAR TRANSITING PLANETS , 2008 .

[13]  R. Essick,et al.  Tidal Dissipation in WASP-12 , 2017, 1710.00858.

[14]  Diana Dragomir,et al.  RULING OUT THE ORBITAL DECAY OF THE WASP-43B EXOPLANET , 2016, 1603.01144.

[15]  Kyle A. Pearson,et al.  Investigating the physical properties of transiting hot Jupiters with the 1.5-m Kuiper Telescope , 2017, 1708.07909.

[16]  S. Udry,et al.  WASP-43b: the closest-orbiting hot Jupiter , 2011, 1104.2823.

[17]  Jacob L. Bean,et al.  A DETECTION OF WATER IN THE TRANSMISSION SPECTRUM OF THE HOT JUPITER WASP-12b AND IMPLICATIONS FOR ITS ATMOSPHERIC COMPOSITION , 2015, 1504.05586.

[18]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[19]  A. Barker,et al.  On internal wave breaking and tidal dissipation near the centre of a solar-type star , 2010, 1001.4009.

[20]  M. Livio,et al.  THE ORBITAL EVOLUTION OF GAS GIANT PLANETS AROUND GIANT STARS , 2009, 0910.2396.

[21]  C. Copperwheat,et al.  Transmission photometry of WASP-12b: simultaneous measurement of the planetary radius in three bands , 2013, 1305.4166.

[22]  Joshua N. Winn,et al.  THE TRANSIT LIGHT-CURVE PROJECT. XIV. CONFIRMATION OF ANOMALOUS RADII FOR THE EXOPLANETS TrES-4b, HAT-P-3b, AND WASP-12b , 2011, 1103.3078.

[23]  I. Plauchu-Frayn,et al.  Discovery of WASP-113b and WASP-114b, two inflated hot-Jupiters with contrasting densities , 2016, 1607.02341.

[24]  S. Udry,et al.  WASP-64 b and WASP-72 b : two new transiting highly irradiated giant planets , 2012, 1210.4257.

[25]  E. Jehin,et al.  Searching for Rapid Orbital Decay of WASP-18b , 2017, 1702.01123.

[26]  G. Nowak,et al.  Departure from the constant-period ephemeris for the transiting exoplanet WASP-12 b , 2016, 1602.09055.

[27]  Martin Pätzold,et al.  Constraints on the tidal dissipation factor of a main sequence star: The case of OGLE-TR-56b , 2007 .

[28]  D. Queloz,et al.  TRAPPIST: a robotic telescope dedicated to the study of planetary systems , 2011, 1101.5807.

[29]  D. Sasselov The New Transiting Planet OGLE-TR-56b: Orbit and Atmosphere , 2003, astro-ph/0303403.

[30]  R. G. West,et al.  WASP-12b: THE HOTTEST TRANSITING EXTRASOLAR PLANET YET DISCOVERED , 2008, 0812.3240.

[31]  R. G. West,et al.  WASP-19b: THE SHORTEST PERIOD TRANSITING EXOPLANET YET DISCOVERED , 2010, 1001.0403.

[32]  D. Fabrycky,et al.  Observations of the Kepler Field with TESS: Predictions for Planet Yield and Observable Features , 2018, The Astronomical Journal.

[33]  D. Queloz,et al.  ON THE ORBIT OF THE SHORT-PERIOD EXOPLANET WASP-19b , 2011, 1101.3293.

[34]  J. Fortney,et al.  Broad-band transmission spectrum and K-band thermal emission of WASP-43b as observed from the ground , 2014, 1401.3007.

[35]  Drake Deming,et al.  Extrasolar Planet Transits Observed at Kitt Peak National Observatory , 2012, 1202.2799.

[36]  S. Bloemen,et al.  Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems , 2011 .

[37]  T. Tan,et al.  Discarding orbital decay in WASP-19b after one decade of transit observations★† , 2019, Monthly Notices of the Royal Astronomical Society.

[38]  K. Stassun,et al.  WASP-4b Arrived Early for the TESS Mission , 2019, The Astronomical Journal.

[39]  A. Cabrera-Lavers,et al.  The GTC exoplanet transit spectroscopy survey - I. OSIRIS transmission spectroscopy of the short period planet WASP-43b , 2014, 1401.3692.

[40]  P. Sada,et al.  Exoplanet Transits Registered at the Universidad de Monterrey Observatory. I. HAT-P-12b, HAT-P-13b, HAT-P-16b, HAT-P-23b, and WASP-10b , 2016, 1601.02292.

[41]  C. Moutou,et al.  The '666' collaboration on OGLE transits: I. Accurate radius of the planets OGLE-TR-10b and OGLE-TR-56b with VLT deconvolution photometry ⋆ , 2006, astro-ph/0610827.

[42]  B. Hansen CALIBRATION OF EQUILIBRIUM TIDE THEORY FOR EXTRASOLAR PLANET SYSTEMS , 2010, 1009.3027.

[43]  J. Southworth,et al.  Physical properties of the HAT-P-23 and WASP-48 planetary systems from multi-colour photometry , 2015, 1503.00762.

[44]  F. Bartoli'c Tidal Evolution of Close-In Extra-Solar Planets , 2015 .

[45]  John Asher Johnson,et al.  Origins of Hot Jupiters , 2018, Annual Review of Astronomy and Astrophysics.

[46]  E. Jehin,et al.  A Photometric Study of the Hot Exoplanet WASP-19b , 2012, 1212.3553.

[47]  B. Smalley,et al.  Spitzer 3.6 and 4.5 μm full-orbit light curves of WASP-18 , 2012, 1210.5585.

[48]  P. Magain,et al.  High-precision multiwavelength eclipse photometry of the ultra-hot gas giant exoplanet WASP-103 b , 2017, 1711.02566.

[49]  Steven Soter,et al.  Q in the solar system , 1966 .

[50]  G. Ogilvie Tidal Dissipation in Stars and Giant Planets , 2014, 1406.2207.

[51]  G. Chabrier,et al.  FALLING TRANSITING EXTRASOLAR GIANT PLANETS , 2009, 0901.2048.

[52]  E. Kerins,et al.  Transits and starspots in the WASP-6 planetary system , 2012, 1211.0864.

[53]  T. Matsakos,et al.  A HOT JUPITER FOR BREAKFAST? EARLY STELLAR INGESTION OF PLANETS MAY BE COMMON , 2015, 1507.07967.

[54]  Keivan G. Stassun,et al.  TRANSIT TIMING VARIATION MEASUREMENTS OF WASP-12b AND QATAR-1b: NO EVIDENCE OF ADDITIONAL PLANETS , 2015, 1512.00464.

[55]  J. W. Lee,et al.  Multi-site campaign for transit timing variations of WASP-12 b: possible detection of a long-period signal of planetary origin , 2013, 1301.5976.

[56]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[57]  B. Jackson,et al.  CONSTRAINING TIDAL DISSIPATION IN STARS FROM THE DESTRUCTION RATES OF EXOPLANETS , 2012, 1205.1803.

[58]  J. Winn,et al.  EVIDENCE FOR THE TIDAL DESTRUCTION OF HOT JUPITERS BY SUBGIANT STARS , 2013, 1306.0567.

[59]  J. Winn,et al.  Empirical Tidal Dissipation in Exoplanet Hosts From Tidal Spin-up , 2018, The Astronomical journal.

[60]  A. Collier Cameron,et al.  The TRAPPIST survey of southern transiting planets. I. Thirty eclipses of the ultra-short period planet WASP-43 b , 2012, 1201.2789.

[61]  E. Kerins,et al.  Pre-discovery transits of the exoplanets WASP-18b and WASP-33b from Hipparcos , 2018, 1803.06187.

[62]  K. Stassun,et al.  Accurate Empirical Radii and Masses of Planets and Their Host Stars with Gaia Parallaxes , 2016, 1609.04389.

[63]  R. Essick,et al.  ORBITAL DECAY OF HOT JUPITERS DUE TO NONLINEAR TIDAL DISSIPATION WITHIN SOLAR-TYPE HOSTS , 2015, 1508.02763.

[64]  Andrew Szentgyorgyi,et al.  GROUND-BASED TRANSIT SPECTROSCOPY OF THE HOT-JUPITER WASP-19b IN THE NEAR-INFRARED , 2013, 1303.1094.

[65]  Tidal decay of close planetary orbits , 1996, astro-ph/9605059.

[66]  R. P. Butler,et al.  OBLIQUITIES OF HOT JUPITER HOST STARS: EVIDENCE FOR TIDAL INTERACTIONS AND PRIMORDIAL MISALIGNMENTS , 2012, 1206.6105.

[67]  Norio Narita,et al.  MuSCAT: a multicolor simultaneous camera for studying atmospheres of transiting exoplanets , 2015, 1509.03154.

[68]  M. Holman,et al.  TWENTY-ONE NEW LIGHT CURVES OF OGLE-TR-56b: NEW SYSTEM PARAMETERS AND LIMITS ON TIMING VARIATIONS , 2011, 1108.4423.

[69]  S. G. Sousa,et al.  New and updated stellar parameters for 90 transit hosts - The effect of the surface gravity , 2013, 1309.1998.

[70]  Chelsea X. Huang,et al.  TESS Full Orbital Phase Curve of the WASP-18b System , 2018, The Astronomical Journal.

[71]  R. G. West,et al.  WASP-103 b: a new planet at the edge of tidal disruption , 2014, 1401.2784.

[72]  D. Apai,et al.  ACCESS: a featureless optical transmission spectrum for WASP-19b from Magellan/IMACS , 2018, Monthly Notices of the Royal Astronomical Society.

[73]  B. Scott Gaudi,et al.  EXOFAST: A Fast Exoplanetary Fitting Suite in IDL , 2012, 1206.5798.

[74]  Miguel de Val-Borro,et al.  HATS-18B: AN EXTREME SHORT-PERIOD MASSIVE TRANSITING PLANET SPINNING UP ITS STAR , 2016, 1606.00848.

[75]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[76]  Stephen R. Kane,et al.  TERMS PHOTOMETRY OF KNOWN TRANSITING EXOPLANETS , 2011, 1108.2308.

[77]  S. Udry,et al.  WASP-120 b, WASP-122 b, and WASP-123 b: Three Newly Discovered Planets from the WASP-South Survey , 2015, 1509.02210.

[78]  A. Burrows,et al.  THERMAL PHASE VARIATIONS OF WASP-12b: DEFYING PREDICTIONS , 2011, 1112.0574.

[79]  J. Southworth,et al.  Physical properties, transmission and emission spectra of the WASP-19 planetary system from multi-colour photometry , 2013, 1306.6384.

[80]  Cambridge,et al.  HAT-P-20b–HAT-P-23b: FOUR MASSIVE TRANSITING EXTRASOLAR PLANETS , 2010, 1008.3388.

[81]  T. Henning,et al.  High-precision photometry by telescope defocusing – VII. The ultrashort period planet WASP-103 , 2014, 1411.2767.

[82]  B. Scott Gaudi,et al.  Achieving Better Than 1 Minute Accuracy in the Heliocentric and Barycentric Julian Dates , 2010, 1005.4415.

[83]  Henry Ngo,et al.  KELT-16b: A Highly Irradiated, Ultra-short Period Hot Jupiter Nearing Tidal Disruption , 2016, 1608.00618.

[84]  Jacob L. Bean,et al.  SPITZER PHASE CURVE CONSTRAINTS FOR WASP-43b AT 3.6 AND 4.5 μm , 2016, 1608.00056.

[85]  R. Greenberg,et al.  Tidal Evolution of Close-in Extrasolar Planets , 2007, Proceedings of the International Astronomical Union.

[86]  D. Ricci,et al.  Multifilter Transit Observations of WASP-39b and WASP-43b with Three San Pedro Mártir Telescopes , 2014, 1412.6178.