A mutual-information scale-space for image feature detection and feature-based classification of volumetric brain images

This paper proposes a novel information theoretic scale-space for salient feature detection, based on the mutual information (MI) of image measurement and location. The MI scale-space is designed to identify image regions whose measurements are maximally informative regarding spatial location. A framework for computing the MI scale-space is proposed, based on combining information theory with Gaussian scale-space theory, where uncertainty in spatial location is explicitly defined by the heat equation. Experiments investigate the use of MI features for feature-based classification of Alzheimer's subjects in volumetric magnetic resonance imagery from a public data set, where MI features result in higher classification accuracy than features selected according to the established difference-of-Gaussian (DOG) criterion [15].

[1]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[2]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[3]  Gustavo Carneiro,et al.  Multi-scale phase-based local features , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[4]  M. Jagersand Saliency maps and attention selection in scale and spatial coordinates: an information theoretic approach , 1995, Proceedings of IEEE International Conference on Computer Vision.

[5]  Martin Jägersand,et al.  Saliency Maps and Attention Selection in Scale and Spatial Coordinates: An Information Theoretic Approach , 1995, ICCV.

[6]  Andrew Zisserman,et al.  An Affine Invariant Salient Region Detector , 2004, ECCV.

[7]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[8]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[9]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[10]  Michael Brady,et al.  Saliency, Scale and Image Description , 2001, International Journal of Computer Vision.

[11]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[12]  David G. Stork,et al.  Pattern Classification , 1973 .

[13]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[14]  John G. Csernansky,et al.  Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults , 2007, Journal of Cognitive Neuroscience.

[15]  Jon Sporring,et al.  The entropy of scale-space , 1996, ICPR.

[16]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[17]  R A Young,et al.  The Gaussian derivative model for spatial vision: I. Retinal mechanisms. , 1988, Spatial vision.

[18]  Ghassan Hamarneh,et al.  N-Sift: N-Dimensional Scale Invariant Feature Transform for Matching Medical Images , 2007, ISBI.

[19]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[20]  Paul Suetens,et al.  An Information Theoretic Approach for Non-rigid Image Registration Using Voxel Class Probabilities , 2003, MICCAI.

[21]  Tien-Tsin Wong,et al.  Volumetric Ultrasound Panorama Based on 3D SIFT , 2008, MICCAI.

[22]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[23]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[24]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[25]  D. Louis Collins,et al.  Feature-based morphometry: Discovering group-related anatomical patterns , 2010, NeuroImage.

[26]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[27]  William M. Wells,et al.  Bayesian Registration via Local Image Regions: Information, Selection and Marginalization , 2009, IPMI.

[28]  Hans P. Moravec Visual Mapping by a Robot Rover , 1979, IJCAI.

[29]  Nuno Vasconcelos,et al.  Bottom-up saliency is a discriminant process , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[30]  J. Sponring The entropy of scale-space , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[31]  Pietro Perona,et al.  Evaluation of Features Detectors and Descriptors based on 3D Objects , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.