Zinc sulfide nanowire arrays on silicon wafers for field emitters

Wurtzite structured zinc sulfide (ZnS) nanowire arrays are synthesized on silicon (111) wafers by a facile evaporation–condensation approach. These ZnS nanowire arrays possess predominant field emission properties with a low turn-on field of 2.9 V µm−1, a low threshold field of 4.25 V µm−1, a high field-enhancement factor (over 2700), and a high stability with a low fluctuation (∼0.8%). The improved field emission performance of these ZnS nanowire arrays is attributed to their specific crystallographic feature—array structures with nanotips and high single crystallinity. These results suggest that such ZnS nanowire arrays can be used as building blocks for field emitters.

[1]  Y. Bando,et al.  Characterization, cathodoluminescence and field-emission properties of morphology-tunable CdS micro/nanostructures , 2009, 2010 3rd International Nanoelectronics Conference (INEC).

[2]  Lide Zhang,et al.  Density-Controlled Homoepitaxial Growth of ZnS Nanowire Arrays , 2009 .

[3]  J. Zou,et al.  Field Emission and Cathodoluminescence of ZnS Hexagonal Pyramids of Zinc Blende Structured Single Crystals , 2009 .

[4]  Y. Bando,et al.  Solvothermal Synthesis, Cathodoluminescence, and Field‐Emission Properties of Pure and N‐Doped ZnO Nanobullets , 2009 .

[5]  J. Zou,et al.  Growth, Cathodoluminescence and Field Emission of ZnS Tetrapod Tree‐like Heterostructures , 2008 .

[6]  S. Chaudhuri,et al.  ZnS Nanowire Arrays: Synthesis, Optical and Field Emission Properties , 2008 .

[7]  Y. Bando,et al.  Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures. , 2008, ACS nano.

[8]  Y. Bando,et al.  Multiangular Branched ZnS Nanostructures with Needle-Shaped Tips: Potential Luminescent and Field-Emitter Nanomaterial , 2008 .

[9]  J. Zou,et al.  Silicon-induced oriented ZnS nanobelts for hydrogen sensitivity , 2008, Nanotechnology.

[10]  Dmitri Golberg,et al.  Inorganic semiconductor nanostructures and their field-emission applications , 2008 .

[11]  C. Zhi,et al.  Ultrafine ZnS Nanobelts as Field Emitters , 2007 .

[12]  Y. Bando,et al.  Crystal orientation-ordered ZnS nanobelt quasi-arrays and their enhanced field-emission. , 2007, Chemical communications.

[13]  Xihong Chen,et al.  Field emission and photoluminescence characteristics of ZnS nanowires via vapor phase growth , 2007 .

[14]  J. Zou,et al.  ZnS nanowires and their coaxial lateral nanowire heterostructures with BN , 2007 .

[15]  S. Chaudhuri,et al.  ZnO Doughnuts: Controlled Synthesis, Growth Mechanism, and Optical Properties , 2007 .

[16]  Z. Key One-Dimensional (1D) ZnS Nanomaterials and Nanostructures , 2009 .

[17]  M. Naughton,et al.  Aligned Ultralong ZnO Nanobelts and Their Enhanced Field Emission , 2006 .

[18]  W. Cai,et al.  Well-aligned zinc sulfide nanobelt arrays : Excellent field emitters , 2006 .

[19]  K. Chattopadhyay,et al.  Field emission from ZnS nanorods synthesized by radio frequency magnetron sputtering technique , 2006 .

[20]  Zhong Lin Wang,et al.  Growth of anisotropic one-dimensional ZnS nanostructures , 2006 .

[21]  Yang Jiang,et al.  Homoepitaxial Growth and Lasing Properties of ZnS Nanowire and Nanoribbon Arrays , 2006 .

[22]  Dmitri Golberg,et al.  Field emission properties of macroscopic single-walled carbon nanotube strands , 2005 .

[23]  S. Chaudhuri,et al.  Controlled synthesis and photoluminescence properties of ZnS nanowires and nanoribbons. , 2005, The journal of physical chemistry. B.

[24]  Zhong Lin Wang,et al.  Crystal orientation-ordered ZnS nanowire bundles. , 2004, Journal of the American Chemical Society.

[25]  Y. Bando,et al.  Oriented Assemblies of ZnS One‐Dimensional Nanostructures , 2004 .

[26]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[27]  W. D. de Heer,et al.  A Carbon Nanotube Field-Emission Electron Source , 1995, Science.