Attractors of partial differential evolution equations and estimates of their dimension

CONTENTSIntroduction § 1. Maximal attractors of semigroups generated by evolution equations § 2. Examples of parabolic equations and systems having a maximal attractor § 3. The Hausdorff dimension of invariant sets § 4. Estimate of the change in volume under the action of shift operators generated by linear evolution equations § 5. An upper bound for the Hausdorff dimension of attractors of semigroups corresponding to evolution equations § 6. A lower bound for the dimension of an attractor § 7. Differentiability of shift operators § 8. Estimates of the Hausdorff dimension of an attractor of a two-dimensional Navier-Stokes system § 9. Upper and lower bounds for the Hausdorff dimension of attractors of parabolic equations and parabolic systems § 10. Attractors of semigroups having a global Lyapunov function § 11. Regular attractors of semigroups having a Lyapunov functionReferences

[1]  S. L. Sobolev,et al.  Applications of functional analysis in mathematical physics , 1963 .

[2]  S. Croucher,et al.  Surveys , 1965, Understanding Communication Research Methods.

[3]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[4]  A. Babin FINITE DIMENSIONALITY OF THE KERNEL AND COKERNEL OF QUASILINEAR ELLIPTIC MAPPINGS , 1974 .

[5]  C. Foiaș,et al.  Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .

[6]  J. Mallet-Paret Negatively invariant sets of compact maps and an extension of a theorem of Cartwright , 1976 .

[7]  Gerd Grubb,et al.  PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .

[8]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[9]  M. Vishik,et al.  COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: Existence of and an estimate for the dimension of attractors in quasilinear parabolic equations, and Navier-Stokes systems , 1982 .

[10]  M. Vishik,et al.  Upper and lower estimates for the dimension of attractors of partial differential evolution equations , 1983 .

[11]  J. M. Ball,et al.  GEOMETRIC THEORY OF SEMILINEAR PARABOLIC EQUATIONS (Lecture Notes in Mathematics, 840) , 1982 .

[12]  O. Ladyzhenskaya Finite-dimensionality of bounded invariant sets for Navier-stokes systems and other dissipative systems , 1985 .

[13]  G. Sell,et al.  The Hopf Bifurcation and Its Applications , 1976 .

[14]  S. Smale,et al.  A generalized Morse theory , 1964 .

[15]  R. Temam,et al.  Asymptotic analysis of the navier-stokes equations , 1983 .

[16]  M. Vishik,et al.  Attractors of Navier-Stokes systems and of parabolic equations, and estimates for their dimensions , 1985 .

[17]  N. V. Nikolenko INVARIANT ASYMPTOTICALLY STABLE TORI OF THE PERTURBED KORTEWEG-DE VRIES EQUATION , 1980 .

[18]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[19]  Zbigniew Nitecki,et al.  Differentiable dynamics;: An introduction to the orbit structure of diffeomorphisms , 1971 .

[20]  H Brezis,et al.  Nonlinear Schroedinger Evolution Equations. , 1979 .

[21]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[22]  O. Ladyzhenskaya,et al.  A dynamical system generated by the Navier-Stokes equations , 1975 .

[23]  A. Chetaev,et al.  On the dimension of attractors for a class of dissipative systems , 1982 .

[24]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[25]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[26]  L. D. Meshalkin,et al.  Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid , 1961 .

[27]  K. R. Schneider Marsden, J. E. / McCracken, M., The Hopf Bifureation and Its Applications. New York-Heidelberg-Berlin. Springer-Verlag. 1976. XIII, 408 S., 56 Abb., DM 36.20. US $ 14.80 (Applied Mathematical Sciences 19) , 1979 .