Orientation and navigation in Amphibia

Aquatic and terrestrial amphibians integrate acoustic, magnetic, mechanical, olfactory and visual directional information into a redundant–multisensory orientation system. The sensory information is processed to accomplish homing following active or passive displacement by either path integration, beaconing, pilotage, compass orientation or true navigation. There is evidence for two independent compass systems, a time-compensated compass based on celestial cues and a light-dependent magnetic inclination compass. Beaconing along acoustic or olfactory gradients emanating from the home site, as well as pilotage along fixed visual landmarks also form an important part in the behaviour of many species. True navigation has been shown in only one species, the aquatic salamander Notophthalmus viridescens. Evidence on the nature of the navigational map obtained so far is compatible with the magnetic map hypothesis.

[1]  D. Ferguson,et al.  Extraoptic Celestial Orientation in the Southern Cricket Frog Acris gryllus , 1970, Science.

[2]  Kinesthetic Orientation in the California Newt (Taricha Torosa) , 1970 .

[3]  D. Ferguson THE SENSORY BASIS OF ORIENTATION IN AMPHIBIANS , 1971, Annals of the New York Academy of Sciences.

[4]  D. H. Taylor,et al.  Extraocular Photoreception and Compass Orientation in Larval Bullfrogs, Rana catesbeiana , 1976 .

[5]  Anthony Arak,et al.  Sexual selection by male–male competition in natterjack toad choruses , 1983, Nature.

[6]  J. Petranka Breeding Migrations, Breeding Season, Clutch Size, and Oviposition of Stream-breeding Ambystoma texanum , 1984 .

[7]  W. Freeland,et al.  The rate of range expansion by Bufo marinus in Northern Australia, 1980-84 , 1985 .

[8]  J. Parzefall,et al.  Comparative study of the rheotaxis in the cave salamander Proteus anguinus and his epigean relative Necturus maculosus (Proteidae, Urodela) , 1987, Behavioural Processes.

[9]  Bernd Fritzsch,et al.  The Evolution of the amphibian auditory system , 1988 .

[10]  Olfaction as an orientation mechanism in migrating Ambystoma maculatum , 1989 .

[11]  T. Leucht Interactions of light and gravity reception with magnetic fields in Xenopus laevis. , 1990, The Journal of experimental biology.

[12]  U. Sinsch Migration and orientation in anuran amphibians , 1990 .

[13]  U. Sinsch Mini-review : the orientation behaviour of amphibians , 1991 .

[14]  U. Sinsch Sex-biassed site fidelity and orientation behaviour in reproductive natterjack toads (Bufo calamita) , 1992 .

[15]  J. Phillips,et al.  Wavelength specific effects of light on magnetic compass orientation of the eastern red-spotted newt Notophthalmus viridescens , 1992 .

[16]  How does a newt find its pond? The role of chemical cues in migrating newts (Triturus alpestris) , 1993 .

[17]  Rana subaquavocalis, a remarkable new species of leopard frog (Rana pipiens complex) from southeastern Arizona that calls inder water , 1993 .

[18]  J. Phillips,et al.  True navigation by an amphibian , 1995, Animal Behaviour.

[19]  Hygrotactic and Olfactory Orientation in Juvenile Common Toads (Bufo bufo) During the Postmetamorphic Period , 1996 .

[20]  G. Measey,et al.  Feral Xenopus laevis in South Wales , 1998 .

[21]  J. Phillips,et al.  Extraocular magnetic compass in newts , 1999, Nature.

[22]  Borland,et al.  The case for light-dependent magnetic orientation in animals , 1999, The Journal of experimental biology.

[23]  Borland,et al.  Ferromagnetic material in the eastern red-spotted newt notophthalmus viridescens , 1999, The Journal of experimental biology.

[24]  U. Sinsch,et al.  In search of water: orientation behaviour of dehydrated natterjack toads, Bufo calamita , 2001, Animal Behaviour.

[25]  J. Phillips,et al.  Evidence for the use of magnetic map information by an amphibian , 2001, Animal Behaviour.

[26]  C. Rocha,et al.  Microhabitat Use and Orientation to Water Flow Direction by Tadpoles of the Leptodactylid Frog Thoropa miliaris in Southeastern Brazil , 2002 .

[27]  J. Phillips,et al.  Behavioral titration of a magnetic map coordinate , 2002, Journal of Comparative Physiology A.

[28]  J. Diego-Rasilla,et al.  Celestial orientation in the marbled newt (Triturus marmoratus) , 2002, Journal of Ethology.

[29]  J. Phillips,et al.  Use of a Magnetic Compass for Y-Axis Orientation in Larval Bullfrogs, Rana catesbeiana , 2002, Copeia.

[30]  J. Kirschvink,et al.  'Fixed-axis' magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field? , 2002, The Journal of experimental biology.

[31]  F. J. Diego-Rasilla,et al.  Heterospecific call recognition and phonotaxis in the orientation behavior of the marbled newt, Triturus marmoratus , 2004, Behavioral Ecology and Sociobiology.

[32]  U. Sinsch Orientation behaviour of toads (Bufo bufo) displaced from the breeding site , 1987, Journal of Comparative Physiology A.

[33]  J. Phillips Magnetic compass orientation in the Eastern red-spotted newt (Notophthalmus viridescens) , 2004, Journal of Comparative Physiology A.

[34]  J. Phillips Use of the earth's magnetic field by orienting cave salamanders (Eurycea lucifuga) , 2004, Journal of comparative physiology.