Typicality sharpens category representations in object-selective cortex

[1]  J. DiCarlo,et al.  Using goal-driven deep learning models to understand sensory cortex , 2016, Nature Neuroscience.

[2]  Carol A. Seger,et al.  Categorical evidence, confidence, and urgency during probabilistic categorization , 2016, NeuroImage.

[3]  S. Huettel,et al.  Cortical Brain Activity Reflecting Attentional Biasing Toward Reward-Predicting Cues Covaries with Economic Decision-Making Performance. , 2016, Cerebral cortex.

[4]  Yaoda Xu,et al.  Object Representations In Human Parietal And Occipito-Temporal Cortices: Similarities And Differences. , 2015, Journal of vision.

[5]  Fei-Fei Li,et al.  Basic Level Category Structure Emerges Gradually across Human Ventral Visual Cortex , 2015, Journal of Cognitive Neuroscience.

[6]  Thomas A. Carlson,et al.  Emerging Object Representations in the Visual System Predict Reaction Times for Categorization , 2015, PLoS Comput. Biol..

[7]  Moritz F. Wurm,et al.  Decoding Actions at Different Levels of Abstraction , 2015, The Journal of Neuroscience.

[8]  Aude Oliva,et al.  Parametric Coding of the Size and Clutter of Natural Scenes in the Human Brain. , 2014, Cerebral cortex.

[9]  Matthew D. Lieberman,et al.  Person-specific Theory of Mind in Medial pFC , 2015, Journal of Cognitive Neuroscience.

[10]  Russell A. Poldrack,et al.  What do differences between multi-voxel and univariate analysis mean? How subject-, voxel-, and trial-level variance impact fMRI analysis , 2014, NeuroImage.

[11]  R. Poldrack,et al.  Quantifying the internal structure of categories using a neural typicality measure. , 2014, Cerebral cortex.

[12]  Daniel L. K. Yamins,et al.  Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition , 2014, PLoS Comput. Biol..

[13]  Ha Hong,et al.  Performance-optimized hierarchical models predict neural responses in higher visual cortex , 2014, Proceedings of the National Academy of Sciences.

[14]  L. Tyler,et al.  Object-Specific Semantic Coding in Human Perirhinal Cortex , 2014, The Journal of Neuroscience.

[15]  Dwight J. Kravitz,et al.  Task context impacts visual object processing differentially across the cortex , 2014, Proceedings of the National Academy of Sciences.

[16]  Nikolaus Kriegeskorte,et al.  The Emergence of Semantic Meaning in the Ventral Temporal Pathway , 2014, Journal of Cognitive Neuroscience.

[17]  A. Caramazza,et al.  Tripartite Organization of the Ventral Stream by Animacy and Object Size , 2013, The Journal of Neuroscience.

[18]  Daniel D. Dilks,et al.  The Occipital Place Area Is Causally and Selectively Involved in Scene Perception , 2013, The Journal of Neuroscience.

[19]  Jack L. Gallant,et al.  A Continuous Semantic Space Describes the Representation of Thousands of Object and Action Categories across the Human Brain , 2012, Neuron.

[20]  Kaia L. Vilberg,et al.  Age differences in the neural correlates of recollection: transient versus sustained fMRI effects , 2012, Neurobiology of Aging.

[21]  B. Love,et al.  Striatal and hippocampal entropy and recognition signals in category learning: simultaneous processes revealed by model-based fMRI. , 2012, Journal of experimental psychology. Learning, memory, and cognition.

[22]  A. Oliva,et al.  A Real-World Size Organization of Object Responses in Occipitotemporal Cortex , 2012, Neuron.

[23]  J. S. Guntupalli,et al.  The Representation of Biological Classes in the Human Brain , 2012, The Journal of Neuroscience.

[24]  B. Love,et al.  Learning the exception to the rule: model-based FMRI reveals specialized representations for surprising category members. , 2012, Cerebral cortex.

[25]  Thomas L. Griffiths,et al.  of the Annual Meeting of the Cognitive Science Society Title Constructing a hypothesis space from the Web for large-scale Bayesian word learning , 2012 .

[26]  S. Kastner,et al.  Topographic maps in human frontal and parietal cortex , 2009, Trends in Cognitive Sciences.

[27]  Dirk B. Walther,et al.  Natural Scene Categories Revealed in Distributed Patterns of Activity in the Human Brain , 2009, The Journal of Neuroscience.

[28]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Kaia L. Vilberg,et al.  Functional significance of retrieval‐related activity in lateral parietal cortex: Evidence from fMRI and ERPs , 2009, Human brain mapping.

[30]  I. Daum,et al.  Associations evoked during memory encoding recruit the context‐network , 2009, Hippocampus.

[31]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[32]  W. T. Maddox,et al.  Dissociable Prototype Learning Systems: Evidence from Brain Imaging and Behavior , 2008, The Journal of Neuroscience.

[33]  M. Corbetta,et al.  Sensory-motor mechanisms in human parietal cortex underlie arbitrary visual decisions , 2008, Nature Neuroscience.

[34]  K. Grill-Spector,et al.  Relating retinotopic and object-selective responses in human lateral occipital cortex. , 2008, Journal of neurophysiology.

[35]  J. Gallant,et al.  Identifying natural images from human brain activity , 2008, Nature.

[36]  Raymond J. Dolan,et al.  fMRI Activity Patterns in Human LOC Carry Information about Object Exemplars within Category , 2008, Journal of Cognitive Neuroscience.

[37]  S. Kastner,et al.  Two hierarchically organized neural systems for object information in human visual cortex , 2008, Nature Neuroscience.

[38]  Jeffrey D. Johnson,et al.  Recollection and the reinstatement of encoding-related cortical activity. , 2007, Cerebral cortex.

[39]  K. Grill-Spector,et al.  Differential development of high-level visual cortex correlates with category-specific recognition memory , 2007, Nature Neuroscience.

[40]  M. Giese,et al.  Norm-based face encoding by single neurons in the monkey inferotemporal cortex , 2006, Nature.

[41]  Leslie G. Ungerleider,et al.  Involvement of human left dorsolateral prefrontal cortex in perceptual decision making is independent of response modality , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Rainer Goebel,et al.  Information-based functional brain mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[43]  B. Love Environment and Goals Jointly Direct Category Acquisition , 2005 .

[44]  G. Rees,et al.  Predicting the orientation of invisible stimuli from activity in human primary visual cortex , 2005, Nature Neuroscience.

[45]  David L. Faigman,et al.  Human category learning. , 2005, Annual review of psychology.

[46]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[47]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[48]  K. Grill-Spector The neural basis of object perception , 2003, Current Opinion in Neurobiology.

[49]  J. D. Smith,et al.  Comparing prototype-based and exemplar-based accounts of category learning and attentional allocation. , 2002, Journal of experimental psychology. Learning, memory, and cognition.

[50]  N. Sigala,et al.  Visual Categorization and Object Representation in Monkeys and Humans , 2002, Journal of Cognitive Neuroscience.

[51]  N. Sigala,et al.  Visual categorization shapes feature selectivity in the primate temporal cortex , 2002, Nature.

[52]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[53]  N. Kanwisher,et al.  The Human Body , 2001 .

[54]  A. O'Toole,et al.  Prototype-referenced shape encoding revealed by high-level aftereffects , 2001, Nature Neuroscience.

[55]  C. Carter,et al.  Complementary Category Learning Systems Identified Using Event-Related Functional MRI , 2000, Journal of Cognitive Neuroscience.

[56]  J. Haxby,et al.  Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects , 1999, Nature Neuroscience.

[57]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[58]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[59]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[60]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[61]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[62]  W. T. Maddox,et al.  Relations between prototype, exemplar, and decision bound models of categorization , 1993 .

[63]  R. Nosofsky Similarity Scaling and Cognitive Process Models , 1992 .

[64]  R. Nosofsky,et al.  Typicality in logically defined categories: Exemplar-similarity versus rule instantiation , 1991, Memory & cognition.

[65]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[66]  R. Nosofsky Attention, similarity, and the identification-categorization relationship. , 1986, Journal of experimental psychology. General.

[67]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[68]  E. Rosch,et al.  Family resemblances: Studies in the internal structure of categories , 1975, Cognitive Psychology.

[69]  E. Rosch ON THE INTERNAL STRUCTURE OF PERCEPTUAL AND SEMANTIC CATEGORIES1 , 1973 .

[70]  F. Moore Cognitive development and the acquisition of language , 1973 .

[71]  M. Posner,et al.  On the genesis of abstract ideas. , 1968, Journal of experimental psychology.