How do protons cross the membrane-solution interface? Kinetic studies on bilayer membranes exposed to the protonophore S-13 (5-chloro-3-tert-butyl-2′-chloro-4′ nitrosalicylanilide)

[1]  J. Teissié,et al.  Lateral proton conduction at lipid–water interfaces and its implications for the chemiosmotic-coupling hypothesis , 1986, Nature.

[2]  W. Hubbell,et al.  The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host bilayers. , 1986, Biophysical journal.

[3]  W. Hubbell,et al.  Hydrophobic ion interactions with membranes. Thermodynamic analysis of tetraphenylphosphonium binding to vesicles. , 1986, Biophysical journal.

[4]  W. Hubbell,et al.  The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. , 1986, Biophysical journal.

[5]  R. D. Levie,et al.  An experimental comparison between the continuum and single jump descriptions of nonactin-mediated potassium transport through black lipid membranes , 1985 .

[6]  J. Teissié,et al.  Evidence for conduction of protons along the interface between water and a polar lipid monolayer. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D. Kell,et al.  A minimal hypothesis for membrane-linked free-energy transduction. The role of independent, small coupling units. , 1984, Biochimica et biophysica acta.

[8]  M. Gutman,et al.  Kinetic analysis of proton transfer between reactants adsorbed to the same micelle. The effect of proximity on the rate constants. , 1984, European journal of biochemistry.

[9]  K. Jacobson,et al.  Relationship between lateral diffusion, collision frequency, and electron transfer of mitochondrial inner membrane oxidation-reduction components. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[10]  S. Hladky,et al.  Transient currents carried by the uncoupler, carbonyl cyanide m-chlorophenylhydrazone. , 1983, Biochimica et biophysica acta.

[11]  R. Benz,et al.  The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone). , 1983, Biophysical journal.

[12]  H. Terada,et al.  The interaction of highly active uncouplers with mitochondria. , 1981, Biochimica et biophysica acta.

[13]  J. Dilger,et al.  Transport of protons across membranes by weak acids. , 1980, Physiological reviews.

[14]  J. Dilger,et al.  Proton transport through membranes induced by weak acids: A study of two substituted benzimidazoles , 1979, The Journal of Membrane Biology.

[15]  S. McLaughlin,et al.  Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. , 1979, Biochemistry.

[16]  D B Kell,et al.  On the functional proton current pathway of electron transport phosphorylation. An electrodic view. , 1979, Biochimica et biophysica acta.

[17]  V. Parsegian,et al.  Measured work of deformation and repulsion of lecithin bilayers. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. Wilson,et al.  Interaction of uncouplers with the mitochondrial membrane: identification of the high affinity binding site. , 1978, Archives of biochemistry and biophysics.

[19]  S. McLaughlin,et al.  The kinetic mechanism of action of an uncoupler of oxidative phosphorylation , 1977, The Journal of Membrane Biology.

[20]  D. Wilson,et al.  Interaction of uncouplers with the mitochondrial membrane: a high-affinity binding site. , 1977, Archives of biochemistry and biophysics.

[21]  R. D. Carlson,et al.  A simple method for the preparation of homogeneous phospholipid vesicles. , 1977, Biochemistry.

[22]  W. Perman,et al.  Electrical conductivity in lipid bilayer membranes induced by pentachlorophenol. , 1976, Biophysical journal.

[23]  J. Arents,et al.  Surface potential and the interaction of weakly acidic uncouplers of oxidative phosphorylation with liposomes and mitochondria. , 1975, Biochimica et biophysica acta.

[24]  K. van Dam,et al.  On the stoichiometry between uncouplers of oxidative phosphorylation and respiratory chains. The catalytic action of SF 6847 (3,5-di-tert-butyl-4-hydroxy-benzylidenemalononitrile). , 1975, Biochimica et biophysica acta.

[25]  S. McLaughlin,et al.  Antibiotics and membrane biology. , 1975, Annual review of biophysics and bioengineering.

[26]  I. Tinsley,et al.  A simple, sensitive method for lipid phosphorus , 1974, Lipids.

[27]  S. Hladky The energy barriers to ion transport by nonactin across thin lipid membranes. , 1974, Biochimica et biophysica acta.

[28]  Y. Hatefi,et al.  Characterization and localization of mitochondrial uncoupler binding sites with an uncoupler capable of photoaffinity labeling. , 1974, The Journal of biological chemistry.

[29]  D. Tosteson,et al.  Diffusion of Weak Acids across Lipid Bilayer Membranes: Effects of Chemical Reactions in the Unstirred Layers , 1973, Science.

[30]  C. Mead,et al.  A barrier model for current flow in lipid bilayer membranes , 1973, The Journal of Membrane Biology.

[31]  S. McLaughlin,et al.  IONIC PROBES OF MEMBRANE STRUCTURES * , 1972, Annals of the New York Academy of Sciences.

[32]  S B Hladky,et al.  Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems , 1972, Quarterly Reviews of Biophysics.

[33]  O. H. Leblanc,et al.  The effect of uncouplers of oxidative phosphorylation on lipid bilayer membranes: Carbonylcyanidem-chlorophenylhydrazone , 1971, The Journal of Membrane Biology.

[34]  D. Wilson,et al.  Mechanism of action of uncouplers of oxidative phosphorylation. , 1971, Biochemistry.

[35]  A. Finkelstein,et al.  The Water and Nonelectrolyte Permeability Induced in Thin Lipid Membranes by the Polyene Antibiotics Nystatin and Amphotericin B , 1970, The Journal of general physiology.

[36]  P. Läuger,et al.  Nonlinear electrical effects in lipid bilayer membranes. II. Integration of the generalized Nernst-Planck equations. , 1969, Biophysical journal.

[37]  A. Parsegian,et al.  Energy of an Ion crossing a Low Dielectric Membrane: Solutions to Four Relevant Electrostatic Problems , 1969, Nature.

[38]  A. Finkelstein,et al.  Permeability and Electrical Properties of Thin Lipid Membranes , 1968, The Journal of general physiology.

[39]  P. Mitchell Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism , 1961, Nature.

[40]  J. Butler The Proton in Chemistry , 1961, Nature.

[41]  D. R. Turner,et al.  New Instrumental Methods in Electrochemistry , 1955 .

[42]  R. Benz,et al.  Optical and electrical properties of thin monoolein lipid bilayers , 2005, The Journal of Membrane Biology.

[43]  R. Benz,et al.  The kinetic mechanism by which CCCP (carbonyl cyanidem-Chlorophenylhydrazone) transports protons across membranes , 2005, The Journal of Membrane Biology.

[44]  B. Honig,et al.  Electrostatic interactions in membranes and proteins. , 1986, Annual review of biophysics and biophysical chemistry.

[45]  M. Gutman The pH jump: probing of macromolecules and solutions by a laser-induced, ultrashort proton pulse--theory and applications in biochemistry. , 1984, Methods of biochemical analysis.

[46]  S. McLaughlin Electrostatic Potentials at Membrane-Solution Interfaces , 1977 .

[47]  B. Neumcke The action of uncouplers on lipid bilayer membranes. , 1975, Membranes.

[48]  M. W. Hill,et al.  Preparation and Use of Liposomes as Models of Biological Membranes , 1974 .

[49]  P. Läuger,et al.  Theoretical analysis of ion conductance in lipid bilayer membranes. , 1973, Membranes.

[50]  S. McLaughlin,et al.  Ionic probes of membrane structures. , 1972, Annals of the New York Academy of Sciences.

[51]  D. Haydon,et al.  Problem of boundary layers in the exchange diffusion of water across bimolecular lipid membranes. , 1969, Journal of theoretical biology.

[52]  Manfred Eigen,et al.  Proton Transfer, Acid-Base Catalysis, and Enzymatic Hydrolysis. Part I: ELEMENTARY PROCESSES†‡ , 1964 .