Improved inversion through use of the null space

Standard least-squares traveltime inversion techniques tend to produce smoothed estimates of the velocity field. More complete results can be obtained by incorporating into the inversion scheme a priori information about the media to be imaged, derived from well logs, core data, and surface geology. A promising technique for achieving this involves projecting this information onto the null space model singular vectors of the inverse problem and including this projection with the non-null space contribution in order to produce a solution. The method, demonstrated with both field and synthetic crosshole traveltime data acquired through layered, anisotropic media, successfully produces improved inversion solutions with lower traveltime residuals, layers that are more homogeneous, sharper interfaces, and better correlated anisotropy parameters than solutions obtained with standard techniques.

[1]  J. Scales,et al.  Regularisation of nonlinear inverse problems: imaging the near-surface weathering layer , 1990 .

[2]  Giovanni Jacovitti,et al.  Tomographic reconstruction from incomplete data set with deterministic and stochastic constraints , 1993, Optics & Photonics.

[3]  R. Pratt,et al.  Reconciliation of crosshole seismic velocities with well information in a layered sedimentary environment , 1996 .

[4]  Dual tomography for imaging complex structures , 1991 .

[5]  J. Gillis,et al.  Linear Differential Operators , 1963 .

[6]  M. Worthington,et al.  An introduction to geophysical tomography , 1984 .

[7]  Andrew T. Walden,et al.  SEISMIC CHARACTER MAPPING OVER RESERVOIR INTERVALS1 , 1990 .

[8]  H. M. Iyer,et al.  Seismic tomography : theory and practice , 1993 .

[9]  Albert Tarantola,et al.  Three‐dimensional inversion without blocks , 1984 .

[10]  Liang C. Shen,et al.  Inversion of induction logs based on maximum flatness, maximum oil, and minimum oil algorithms , 1994 .

[11]  F. Muir,et al.  ANISOTROPIC TRAVELTIME TOMOGRAPHY , 1993 .

[12]  J. Harris,et al.  Coupled seismic and tracer test inversion for aquifer property characterization , 1993 .

[13]  R. G. Pratt,et al.  Anisotropic velocity tomography: A case study in a near-surface rock mass , 1993 .

[14]  Douglas W. Oldenburg,et al.  Applied geophysical inversion , 1994 .

[15]  G. McMechan,et al.  Estimation of resolution and covariance for large matrix inversions , 1995 .

[16]  R G Pratt,et al.  Are our parameter estimators biased? The significance of finite-difference regularization operators , 1995 .

[17]  R. Lytle,et al.  Computerized geophysical tomography , 1979, Proceedings of the IEEE.

[18]  R. G. Pratt,et al.  Traveltime tomography in anisotropic media—I. Theory , 1992 .

[19]  F. Delprat-Jannaud,et al.  WHAT INFORMATION ON THE EARTH MODEL DO REFLECTION TRAVEL TIMES PROVIDE , 1992 .

[20]  J. Scales,et al.  Smoothing seismic tomograms with alpha-trimmed means , 1988 .

[21]  Jessé C. Costa,et al.  Cross-borehole tomography in anisotropic media , 1992 .

[22]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[23]  A. T. Walden,et al.  The nature of the non-Gaussianity of primary reflection coefficients and its significance for deconvolution , 1986 .

[24]  L. Thomsen Weak elastic anisotropy , 1986 .

[25]  R. T. Cutler,et al.  Tomographic determination of velocity and depth in laterally varying media , 1985 .