A distributed combinatorial optimisation heuristic for the scheduling of energy resources represented by self-interested agents

The aggregation of controllable distributed energy resources (DER) to virtual power plants (VPPs) forms a possible integration path for DER in future energy systems. The authors present a fully distributed scheduling heuristic for VPPs. The approach is realised by representing each participant of a VPP by a self-interested agent. Both the global, operator-driven scheduling objective of a VPP as well as arbitrary individual local objectives of the agents are integrated efficiently in a fully distributed coordination paradigm. Convergence and termination of the heuristic are proven in the presence of unreliable environments, e.g., with communication delays.