Predicted lithium-boron compounds under high pressure.

High pressure can fundamentally alter the bonding patterns of light elements and their compounds, leading to the unexpected formation of materials with unusual chemical and physical properties. Using an unbiased structure search method based on particle-swarm optimization algorithms in combination with density functional theory calculations, we investigate the phase stabilities and structural changes of various Li-B systems on the Li-rich regime under high pressures. We identify the formation of four stoichiometric lithium borides (Li(3)B(2), Li(2)B, Li(4)B, and Li(6)B) having unforeseen structural features that might be experimentally synthesizable over a wide range of pressures. Strikingly, it is found that the B-B bonding patterns of these lithium borides evolve from graphite-like sheets in turn to zigzag chains, dimers, and eventually isolated B ions with increasing Li content. These intriguing B-B bonding features are chemically rationalized by the elevated B anionic charges as a result of Li→B charge transfer.

[1]  R. Hoffmann,et al.  LiB and its boron-deficient variants under pressure , 2012 .

[2]  Xiaojun Wu,et al.  Two-dimensional boron monolayer sheets. , 2012, ACS nano.

[3]  R. Hoffmann,et al.  LiBeB: A predicted phase with structural and electronic peculiarities , 2012 .

[4]  Li Zhu,et al.  CALYPSO: A method for crystal structure prediction , 2012, Comput. Phys. Commun..

[5]  X. Zeng,et al.  Polymorphic phases of sp3-hybridized carbon under cold compression. , 2012, Journal of the American Chemical Society.

[6]  Mianqi Xue,et al.  Superconductivity in potassium-doped few-layer graphene. , 2012, Journal of the American Chemical Society.

[7]  T. Yagi,et al.  High-pressure and high-temperature phase transitions in FeTiO3 and a new dense FeTi3O7 structure , 2012 .

[8]  Hui Wang,et al.  Superconductive sodalite-like clathrate calcium hydride at high pressures , 2012, Proceedings of the National Academy of Sciences.

[9]  Yanchao Wang,et al.  Spiral chain O4 form of dense oxygen , 2011, Proceedings of the National Academy of Sciences.

[10]  Hui Wang,et al.  High pressure partially ionic phase of water ice. , 2011, Nature communications.

[11]  Hui Wang,et al.  Substitutional alloy of Bi and Te at high pressure. , 2011, Physical review letters.

[12]  W. Schnick,et al.  Ca3N2 and Mg3N2: unpredicted high-pressure behavior of binary nitrides. , 2011, Journal of the American Chemical Society.

[13]  S. Sinogeikin,et al.  Cold melting and solid structures of dense lithium , 2011 .

[14]  Yanming Ma,et al.  Predicted novel high-pressure phases of lithium. , 2011, Physical review letters.

[15]  R. Hemley,et al.  Structural study of LiB to 70 GPa , 2010 .

[16]  Yanchao Wang,et al.  Crystal structure prediction via particle-swarm optimization , 2010 .

[17]  Hui Wang,et al.  Superhard monoclinic polymorph of carbon. , 2009, Physical review letters.

[18]  Katsuya Shimizu,et al.  Direct observation of a pressure-induced metal-to-semiconductor transition in lithium , 2009, Nature.

[19]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[21]  Yanming Ma,et al.  High-pressure structures of lithium, potassium, and rubidium predicted by an ab initio evolutionary algorithm , 2008 .

[22]  Stefano Curtarolo,et al.  Thermodynamic stabilities of ternary metal borides: An ab initio guide for synthesizing layered superconductors , 2008, 0806.0061.

[23]  R. Nesper,et al.  LiBx (0.82 < × ≤ 1.0) – an Incommensurate Composite Structure below 150 K† , 2006 .

[24]  Stefano Curtarolo,et al.  Theoretical study of metal borides stability , 2006 .

[25]  Stefano Curtarolo,et al.  Prediction of different crystal structure phases in metal borides: A lithium monoboride analog toMgB2 , 2006 .

[26]  S. Deemyad,et al.  Superconducting phase diagram of Li metal in nearly hydrostatic pressures up to 67 GPa. , 2003, Physical review letters.

[27]  W. Pickett,et al.  Theoretical investigation of stoichiometric lithium monoboride , 2003 .

[28]  J. Nagamatsu,et al.  Superconductivity at 39 K in magnesium diboride , 2001, Nature.

[29]  W. Pickett,et al.  Superconductivity of MgB2: covalent bonds driven metallic. , 2001, Physical review letters.

[30]  W. Pickett,et al.  Superconductivity of MgB2 , 2001 .

[31]  K. Syassen,et al.  New high-pressure phases of lithium , 2000, Nature.

[32]  R. Nesper,et al.  Infinite, Linear, Unbranched Borynide Chains in LiBx—Isoelectronic to Polyyne and Polycumulene , 2000 .

[33]  I. R. Harris,et al.  Hydrogenation behaviour, neutron diffraction studies and microstructural characterisation of boron oxide-doped Zr–V alloys , 1999 .

[34]  R. Nesper,et al.  Dilithium Hexaboride, Li2B6 , 1999 .

[35]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[36]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[37]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[38]  S. Pejovnik,et al.  Dissolution of Boron in Lithium Melt , 1995 .

[39]  T. Serebryakova,et al.  Interaction in the system Li-B and some properties of lithium boride phases , 1995 .

[40]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[41]  T. Nakayama,et al.  Electronic Structures of Newly Predicted Intercalation Compounds “Lithium Intercalated α-Boron” , 1993 .

[42]  Roald Hoffmann,et al.  A Chemical Approach to the Orbitals of Organic Polymers , 1991 .

[43]  R. Nesper,et al.  Trilithium tetradecaboride Li3B14: Synthesis, structure, and properties , 1988 .

[44]  A. Overhauser Crystal Structure of Lithium at 4.2 K , 1984 .

[45]  A. Bishop,et al.  Unusual soliton properties of the infinite polyyne chain , 1983 .

[46]  S. Dallek,et al.  Thermal Analysis of Lithium‐Boron Alloys , 1979 .

[47]  L. H. Bennett,et al.  Crystal structure study of a new compound Li5B4 , 1978 .

[48]  R. Sutula,et al.  The density, electrical resistivity and hall coefficient of LiB alloys , 1978 .

[49]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .