Clamping effect on temperature-induced valence transition in epitaxial EuPd$_2$Si$_2$ thin films grown on MgO(001)

Bulk EuPd 2 Si 2 show a temperature-driven valence transisition of europium from ∼ +2 above 200 K to ∼ +3 below 100 K, which is correlated with a shrinking by approximatly 2% of the crystal lattice along the two a-axes. Due to this interconnection between lattice and electronic degrees of freedom the influence of strain in epitaxial thin films is particularly interesting. Ambient X-ray diffraction (XRD) confirms an epitaxial relationship of tetragonal EuPd 2 Si 2 on MgO(001) with an out-of plane c-axis orientation for the thin film, whereby the a-axes of both lattices align. XRD at low temperatures reveals a strong coupling of the thin film lattice to the substrate, showing no abrupt compression over the temperature range from 300 to 10 K. Hard X-ray photoelectron spectroscopy at 300 and 20 K reveals a temperature-independent valence of +2.0 for Eu. The evolving biaxial tensile strain upon cooling is suggested to suppress the valence transition. Instead low temperature transport measurements of the resistivity and the Hall effect in a magnetic field up to 5 T point to a film thickness independent phase transition at 16-20 K, indicating magnetic ordering.

[1]  Marco Peters,et al.  Influence of the Pd–Si Ratio on the Valence Transition in EuPd2Si2 Single Crystals , 2022, Crystal Growth & Design.

[2]  J. Sinova,et al.  Anomalous Hall antiferromagnets , 2021, Nature Reviews Materials.

[3]  S. Chatterjee Heavy fermion thin films: progress and prospects , 2021, Electronic Structure.

[4]  T. Shang,et al.  Anomalous Hall resistivity and possible topological Hall effect in the EuAl4 antiferromagnet , 2020, Physical Review B.

[5]  J. Mannhart,et al.  In situ thermal preparation of oxide surfaces , 2020, APL Materials.

[6]  A. Gloskovskii,et al.  Progress in HAXPES performance combining full-field k-imaging with time-of-flight recording , 2019, Journal of synchrotron radiation.

[7]  A. Gloskovskii,et al.  High-accuracy bulk electronic bandmapping with eliminated diffraction effects using hard X-ray photoelectron momentum microscopy , 2019, Communications Physics.

[8]  K. Iyer,et al.  Eu valence transition behavior in the nano form of EuPd2Si2 , 2018, Journal of Magnetism and Magnetic Materials.

[9]  K. Shimizu,et al.  Divalent, trivalent, and heavy fermion states in Eu compounds , 2017 .

[10]  T. Uozumi,et al.  Temperature-Induced Valence Transition of EuPd2Si2 Studied by Hard X-ray Photoelectron Spectroscopy , 2011 .

[11]  J. Borchers,et al.  Clamping effects in the Al2O3(112¯0)∕Nb(110)∕Eu(110) epitaxial system , 2004 .

[12]  A. Mitsuda,et al.  Temperature dependence of Eu 4f states in EuPd2Si2: bulk-sensitive high-resolution photoemission study , 2004 .

[13]  A. Barbier,et al.  Growth, structure, and morphology of the Pd/MgO(001) interface: Epitaxial site and interfacial distance , 1999 .

[14]  A. Mitsuda,et al.  FIELD-INDUCED VALENCE TRANSITION OF EU(PD1-XPTX)2SI2 , 1997 .

[15]  J. M. Cowley,et al.  Preparation and characterization of MgO surfaces by reflection electron microscopy , 1992, Microscopy research and technique.

[16]  S. Leonard,et al.  The effect of high pressure upon the valence transition in EuPd2Si2 , 1991 .

[17]  Kaindl,et al.  Final-state effects in the x-ray photoemission spectrum of EuPd2P2. , 1985, Physical review. B, Condensed matter.

[18]  L. C. Gupta,et al.  Valence Instability inEu(Pd1−xAux)2Si2: The Global Phase Diagram , 1982 .

[19]  R. G. Pillay,et al.  A new and unique Eu-based mixed valence system: EuPd2Si2 , 1981 .

[20]  W. A. Dench,et al.  Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids , 1979 .

[21]  D. K. Smith,et al.  Low-temperature thermal expansion of LiH, MgO and CaO , 1968 .

[22]  M. A. Durand The Coefficient of Thermal Expansion of Magnesium Oxide , 1936 .