A voltage-behind-reactance model of a dual-voltage six-phase induction machine

The paper describes a voltage-behind reactance model of a six-phase induction machine with two different voltage levels realized in the machine, with magnetic saturation and cross-saturation of the main inductance, magnetic and electric coupling between the 6 phases and a possible mechanical displacement between the two 3-phase stator systems. The stator and rotor stray inductances and resistances are modeled as constant values. The cross-coupling between the d and q axes of the main inductances is included. The described modeling method can be easily extended to multiple nx3-phase induction machines with multiple voltage levels, arbitrary displacement between the stator windings and a common saturation of the iron core in the rotor. It is assumed that the turn effective ratio of both systems is constant throughout the saturation curve of the main inductance.