Stellar and molecular radii of a mira star : First observations with the keck interferometer grism

Using a new grism at the Keck Interferometer, we obtained spectrally dispersed (R ~ 230) interferometric measurements of the Mira star R Vir. These data show that the measured radius of the emission varies substantially from 2.0 to 2.4 μm. Simple models can reproduce these wavelength-dependent variations using extended molecular layers, which absorb stellar radiation and reemit it at longer wavelengths. Because we observe spectral regions with and without substantial molecular opacity, we determine the stellar photospheric radius, uncontaminated by molecular emission. We infer that most of the molecular opacity arises at approximately twice the radius of the stellar photosphere.

[1]  M. Mark Colavita,et al.  Keck Interferometer update , 2003, SPIE Astronomical Telescopes + Instrumentation.

[2]  D. L. Welch Near-Infrared Variants of the Barnes-Evans Method for Finding Cepheid Distances Calibrated With High-Precision Angular Diameters , 1994 .

[3]  A. Kemball,et al.  A Movie of a Star: Multiepoch Very Long Baseline Array Imaging of the SiO Masers toward the Mira Variable TX Cam , 2003 .

[4]  D. Hale,et al.  Interferometry on Mira in the Mid-Infrared: Cyclic Variability of the Continuum Diameter and the Effect of Spectral Lines on Apparent Size , 2003 .

[5]  J. G. Robertson,et al.  Multiwavelength diameters of nearby Miras and semiregular variables , 2004 .

[6]  M. Feast THE PULSATION, TEMPERATURES AND METALLICITIES OF MIRA AND SEMIREGULAR VARIABLES IN DIFFERENT STELLAR SYSTEMS , 1996 .

[7]  C. Ludwig Measurements of the Curves-of-Growth of Hot Water Vapor. , 1971, Applied optics.

[8]  M. Jura,et al.  Short- and intermediate-period oxygen-rich Miras , 1992 .

[9]  Peter G. Tuthill,et al.  New diameter measurements of 10 Mira Variables: implications for effective temperatures, atmospheric structure and pulsation modes , 1995 .

[10]  G. H. Bowen,et al.  Dynamical modeling of long-period variable star atmospheres , 1988 .

[11]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[12]  J. Weiner Mira’s Apparent Size Variations due to a Surrounding Semiopaque H2O Layer , 2004 .

[13]  M. Feast,et al.  A period–luminosity–colour relation for Mira variables , 1989 .

[14]  G. V. van Belle,et al.  Multiepoch Interferometric Study of Mira Variables. I. Narrowband Diameters of RZ Pegasi and S Lacertae , 2002 .

[15]  S. Ridgway,et al.  Time series infrared spectroscopy of the Mira variable chi Cygni , 1982 .

[16]  Michael Shao,et al.  Visibility calibrations with the Palomar Testbed Interferometer , 1998, Astronomical Telescopes and Instrumentation.

[17]  Bertrand Mennesson,et al.  Unveiling Mira stars behind the molecules - Confirmation of the molecular layer model with narrow band near-infrared interferometry , 2004 .

[18]  M. Rowan-Robinson,et al.  Radiative transfer in dust clouds – II. Circumstellar dust shells around early M giants and supergiants , 1982 .

[19]  M. Colavita Fringe Visibility Estimators for the Palomar Testbed Interferometer , 1998, astro-ph/9810462.

[20]  Sebastien Morel,et al.  Evidence for Very Extended Gaseous Layers around O-rich Mira Variables and M Giants , 2002 .

[21]  M. Scholz,et al.  Observable effects of dust formation in dynamic atmospheres of M-type Mira variables , 2006, astro-ph/0601383.

[22]  L. Hillenbrand,et al.  Resolved Inner Disks around Herbig Ae/Be Stars , 2004, astro-ph/0406356.

[23]  L. Willson Mass Loss from Cool Stars: Impact on the Evolution of Stars and Stellar Populations , 2000 .

[24]  M. Ireland,et al.  On the observability of geometric pulsation of M-type Mira variables , 2004 .

[25]  K. Menten,et al.  Radio Photospheres of Long-Period Variable Stars , 1997 .

[26]  G. Knapp,et al.  Reprocessing the Hipparcos data of evolved stars - III. Revised Hipparcos period–luminosity relationship for galactic long-period variable stars , 2003, astro-ph/0301579.

[27]  et al,et al.  Observations of DG tauri with the keck interferometer , 2003 .