Conserved cell types with divergent features between human and mouse cortex

Elucidating the cellular architecture of the human neocortex is central to understanding our cognitive abilities and susceptibility to disease. Here we applied single nucleus RNA-sequencing to perform a comprehensive analysis of cell types in the middle temporal gyrus of human cerebral cortex. We identify a highly diverse set of excitatory and inhibitory neuronal types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to a similar mouse cortex single cell RNA-sequencing dataset revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of human cell type properties. Despite this general conservation, we also find extensive differences between homologous human and mouse cell types, including dramatic alterations in proportions, laminar distributions, gene expression, and morphology. These species-specific features emphasize the importance of directly studying human brain.

Christof Koch | Rafael Yuste | Brian D. Aevermann | Richard H. Scheuermann | Boudewijn P. F. Lelieveldt | Lydia Ng | Thomas Höllt | Hongkui Zeng | Ahmed Mahfouz | Mohamed Keshk | Michael Hawrylycz | Richard G. Ellenbogen | Jeffrey G. Ojemann | Jeroen Eggermont | Allan R. Jones | David Feng | Andrew L. Ko | Ed S. Lein | Ryder P. Gwinn | Brian R. Long | Emma Garren | Thuc Nghi Nguyen | Bosiljka Tasic | Trygve E Bakken | Amy Bernard | John W. Phillips | Susan M. Sunkin | Aaron Szafer | Aaron Oldre | Zizhen Yao | Trygve E. Bakken | Rebecca D. Hodge | Jennie L. Close | Michael Tieu | Osnat Penn | C. Koch | R. Yuste | L. Ng | T. Nguyen | David Feng | M. Hawrylycz | Amy Bernard | Hongkui Zeng | Bosiljka Tasic | Zizhen Yao | Lucas T. Graybuck | Kimberly A. Smith | Darren Bertagnolli | J. Goldy | E. Garren | Osnat Penn | Jeremy A. Miller | Olivia Fong | K. Lathia | Christine Rimorin | Michael Tieu | Tamara Casper | Sheana E. Parry | N. Shapovalova | D. Hirschstein | A. Szafer | N. Dee | B. Levi | S. Sunkin | E. Lein | R. Scheuermann | J. Ojemann | A. Ko | R. Gwinn | C. Cobbs | S. Ding | R. Dalley | Krissy Brouner | J. Nyhus | Aaron Oldre | T. Höllt | B. Lelieveldt | Allison Beller | R. Ellenbogen | C. Keene | A. Mahfouz | J. Close | R. Hodge | J. Eggermont | B. Aevermann | Mohamed Keshk | Zoe Maltzer | M. McGraw | Shannon Reynolds | Saroja Somasundaram | Elliot R. Thomsen | C. Dirk Keene | Olivia Fong | Medea McGraw | Soraya I Shehata | Charles Cobbs | Julie Nyhus | Nick Dee | Sheana Parry | Darren Bertagnolli | Jeff Goldy | Tamara Casper | Kanan Lathia | Christine Rimorin | Saroja Somasundaram | Eliza Barkan | Krissy Brouner | Rachel A. Dalley | Soraya I. Shehata | Zoe Maltzer | Boaz P. Levi | Allison Beller | Songlin Ding | Daniel Hirschstein | Shannon Reynolds | Nadiya V. Shapovalova | Eliza R. Barkan | Daniel Hirschstein

[1]  Jason Tucciarone,et al.  Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex , 2016, Neuron.

[2]  E. Callaway,et al.  Immunochemical characterization of inhibitory mouse cortical neurons: Three chemically distinct classes of inhibitory cells , 2010, The Journal of comparative neurology.

[3]  E. Chang,et al.  Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse , 2016, Neuron.

[4]  Ian R. Wickersham,et al.  The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas , 2017, Neuron.

[5]  P. Hof,et al.  Neuropeptide Y‐immunoreactive Neurons in the Cerebral Cortex of Humans and Other Haplorrhine Primates , 2013, American journal of primatology.

[6]  P. Belichenko,et al.  Calretinin-positive Cajal–Retzius cells persist in the adult human neocortex , 1995, Neuroreport.

[7]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[8]  D. Geschwind,et al.  Cortical Evolution: Judge the Brain by Its Cover , 2013, Neuron.

[9]  Sean M. Kelly,et al.  Erratum: Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex (Neuron (2016) 19(6) (1228–1243)(S089662731630513X)(10.1016/j.neuron.2016.08.021)) , 2016 .

[10]  Ed S. Lein,et al.  Spatiotemporal dynamics of the postnatal developing primate brain transcriptome , 2015, Human molecular genetics.

[11]  Sara Ballouz,et al.  Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor , 2018, Nature Communications.

[12]  J. Ojemann,et al.  Uniquely Hominid Features of Adult Human Astrocytes , 2009, The Journal of Neuroscience.

[13]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[14]  R. Yuste,et al.  Cortical area and species differences in dendritic spine morphology , 2002, Journal of neurocytology.

[15]  B. Cauli,et al.  Activation of cortical interneurons during sleep: an anatomical link to homeostatic sleep regulation? , 2011, Trends in Neurosciences.

[16]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[17]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[18]  S. R. Cajal Textura del Sistema Nervioso del Hombre y de los Vertebrados, 1899–1904 , 2019 .

[19]  Aviv Regev,et al.  Massively-parallel single nucleus RNA-seq with DroNc-seq , 2017, Nature Methods.

[20]  Thomas Steckler,et al.  Removing Obstacles in Neuroscience Drug Discovery: The Future Path for Animal Models , 2009, Neuropsychopharmacology.

[21]  Trygve E Bakken,et al.  h-channels contribute to divergent electrophysiological properties of supragranular pyramidal neurons in human versus mouse cerebral cortex , 2018, bioRxiv.

[22]  S. Quake,et al.  A survey of human brain transcriptome diversity at the single cell level , 2015, Proceedings of the National Academy of Sciences.

[23]  J. DeFelipe,et al.  Microstructure of the neocortex: Comparative aspects , 2002, Journal of neurocytology.

[24]  Trygve E Bakken,et al.  Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type , 2017, bioRxiv.

[25]  Timothy S. Coalson,et al.  Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. , 2012, Cerebral cortex.

[26]  Brian D. Aevermann,et al.  Cell type discovery and representation in the era of high-content single cell phenotyping , 2017, BMC Bioinformatics.

[27]  R. Bjugn The use of the optical disector to estimate the number of neurons, glial and endothelial cells in the spinal cord of the mouse — with a comparative note on the rat spinal cord , 1993, Brain Research.

[28]  Adrian T. Grzybowski,et al.  Chromatin-enriched lncRNAs can act as cell-type specific activators of proximal gene transcription , 2017, Nature Structural &Molecular Biology.

[29]  Erik Aronesty,et al.  Comparison of Sequencing Utility Programs , 2013 .

[30]  Z. J. Huang,et al.  Transcriptional Architecture of Synaptic Communication Delineates GABAergic Neuron Identity , 2017, Cell.

[31]  Karl R. Clauser,et al.  MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins , 2015, Nucleic Acids Res..

[32]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[33]  Lazaros C. Triarhou,et al.  Cellular Structure of the Human Cerebral Cortex , 2009 .

[34]  R. Nieuwenhuys The myeloarchitectonic studies on the human cerebral cortex of the Vogt–Vogt school, and their significance for the interpretation of functional neuroimaging data , 2013, Brain Structure and Function.

[35]  G. Fishell,et al.  The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors , 2010, The Journal of Neuroscience.

[36]  Guy Eyal,et al.  Unique membrane properties and enhanced signal processing in human neocortical neurons , 2016, eLife.

[37]  G. Tamás,et al.  Plasticity in Single Axon Glutamatergic Connection to GABAergic Interneurons Regulates Complex Events in the Human Neocortex , 2016, PLoS biology.

[38]  Lars E. Borm,et al.  The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing , 2017, Science.

[39]  Allan R. Jones,et al.  Shared and distinct transcriptomic cell types across neocortical areas , 2018, Nature.

[40]  Hongkui Zeng,et al.  Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity. , 2015, Cerebral cortex.

[41]  Javier DeFelipe,et al.  The Evolution of the Brain, the Human Nature of Cortical Circuits, and Intellectual Creativity , 2011, Front. Neuroanat..

[42]  Jan H Lui,et al.  Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences , 2013, Nature Neuroscience.

[43]  Guy M McKhann,et al.  Phenotypic Heterogeneity and Plasticity of Isocortical and Hippocampal Astrocytes in the Human Brain , 2014, The Journal of Neuroscience.

[44]  J. Leek,et al.  Temporal dynamics and genetic control of transcription in the human prefrontal cortex , 2011, Nature.

[45]  Allan R. Jones,et al.  Large-Scale Cellular-Resolution Gene Profiling in Human Neocortex Reveals Species-Specific Molecular Signatures , 2012, Cell.

[46]  C. Walsh,et al.  Molecular insights into human brain evolution , 2005, Nature.

[47]  J. DeFelipe Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex , 1997, Journal of Chemical Neuroanatomy.

[48]  Kun Zhang,et al.  A comparative strategy for single-nucleus and single-cell transcriptomes confirms accuracy in predicted cell-type expression from nuclear RNA , 2017, Scientific Reports.

[49]  Christof Koch,et al.  Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics , 2016, Nature Neuroscience.

[50]  P. Kharchenko,et al.  Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain , 2017, Nature Biotechnology.

[51]  Allan R. Jones,et al.  Canonical Genetic Signatures of the Adult Human Brain , 2015, Nature Neuroscience.

[52]  S. Hyman,et al.  Animal models of neuropsychiatric disorders , 2010, Nature Neuroscience.

[53]  Paul Leonard Gabbott “Subpial Fan Cell” — A Class of Calretinin Neuron in Layer 1 of Adult Monkey Prefrontal Cortex , 2016, Front. Neuroanat..

[54]  Robert Gentleman,et al.  Software for Computing and Annotating Genomic Ranges , 2013, PLoS Comput. Biol..

[55]  Michael J Krashes,et al.  MC4R-expressing glutamatergic neurons in the paraventricular hypothalamus regulate feeding and are synaptically connected to the parabrachial nucleus , 2014, Proceedings of the National Academy of Sciences.

[56]  Doron Lancet,et al.  Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification , 2005, Bioinform..

[57]  Allan R. Jones,et al.  Transcriptional Landscape of the Prenatal Human Brain , 2014, Nature.

[58]  A. M. Lassek,et al.  THE HUMAN PYRAMIDAL TRACT: A FIBER AND NUMERICAL ANALYSIS , 1939 .

[59]  Jens Hjerling-Leffler,et al.  Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system , 2016, Science.

[60]  Sara B. Linker,et al.  Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons , 2016, Nature Protocols.

[61]  Frederico A. C. Azevedo,et al.  Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled‐up primate brain , 2009, The Journal of comparative neurology.

[62]  M. Ronaghi,et al.  Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain , 2016, Science.

[63]  Boudewijn P. F. Lelieveldt,et al.  CyteGuide: Visual Guidance for Hierarchical Single-Cell Analysis , 2018, IEEE Transactions on Visualization and Computer Graphics.

[64]  S. Herculano‐Houzel,et al.  Cellular scaling rules for rodent brains , 2006, Proceedings of the National Academy of Sciences.

[65]  Johannes J. Letzkus,et al.  Rapid Neuromodulation of Layer 1 Interneurons in Human Neocortex , 2018, Cell reports.

[66]  Elmar Eisemann,et al.  Cytosplore: Interactive Immune Cell Phenotyping for Large Single‐Cell Datasets , 2016, Comput. Graph. Forum.

[67]  Arno Villringer,et al.  Common Genetic Variation near MC4R Has a Sex-Specific Impact on Human Brain Structure and Eating Behavior , 2013, PloS one.

[68]  Allan R. Jones,et al.  Comprehensive transcriptional map of primate brain development , 2016, Nature.

[69]  Richard H Scheuermann,et al.  Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type , 2017, Nature Neuroscience.

[70]  Richard H. Scheuermann,et al.  Equivalent high-resolution identification of neuronal cell types with single-nucleus and single-cell RNA-sequencing , 2017, bioRxiv.

[71]  C. V. von Bartheld,et al.  The Cellular Composition and Glia–Neuron Ratio in the Spinal Cord of a Human and a Nonhuman Primate: Comparison With Other Species and Brain Regions , 2018, Anatomical record.

[72]  J. Rubenstein,et al.  Subcortical origins of human and monkey neocortical interneurons , 2013, Nature Neuroscience.

[73]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[74]  P. Morgane,et al.  Calretinin-immunoreactive neurons in the primary visual cortex of dolphin and human brains , 1992, Brain Research.

[75]  G. Miyoshi,et al.  Genetic Fate Mapping Reveals That the Caudal Ganglionic Eminence Produces a Large and Diverse Population of Superficial Cortical Interneurons , 2010, The Journal of Neuroscience.

[76]  A. Oudenaarden,et al.  Single-molecule mRNA detection and counting in mammalian tissue , 2013, Nature Protocols.

[77]  J. Kleinman,et al.  Spatiotemporal transcriptome of the human brain , 2011, Nature.

[78]  B. Finlay,et al.  Linked regularities in the development and evolution of mammalian brains. , 1995, Science.