Brownian dynamics simulation of a lipid chain in a membrane bilayer

A Brownian dynamics simulation of a lipid chain is used to model the motional properties of a dipalmitoyl phosphatidylcholine bilayer. The effects of the bilayer environment on the chain are represented by a mean field derived from an extension of the Marcelja model. The simulation was run 44 million steps, the equivalent of approximately 0.66 μs for a viscosity of 2.2 cp. The results are compared with those of a 30 million step simulation of the chain in the absence of the mean field. Deuterium order parameters for the methylene groups along the chain and the average chain length calculated from the mean field trajectory are shown to converge to the experimentally determined values for DPPC with an appropriate choice of parameters. An analysis of the torsional dynamics of the chain, including transition rates and kink probabilities, is carried out. It is demonstrated that kink formation is sometimes, though not always, concerted. A comparison of the membrane and free chain simulations implies that the in...

[1]  Herman J. C. Berendsen,et al.  MOLECULAR-DYNAMICS SIMULATION OF A BILAYER-MEMBRANE , 1982 .

[2]  J. Andrew McCammon,et al.  Diffusive langevin dynamics of model alkanes , 1979 .

[3]  H. Eyring The Activated Complex in Chemical Reactions , 1935 .

[4]  A. Szabó,et al.  Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes. , 1980, Biophysical journal.

[5]  G. T. Evans,et al.  Brownian dynamics simulation of alkane chain reorientation: A comparison of models , 1980 .

[6]  J. Seelig Deuterium magnetic resonance: theory and application to lipid membranes , 1977, Quarterly Reviews of Biophysics.

[7]  M. F. Brown,et al.  Theory of spin‐lattice relaxation in lipid bilayers and biological membranes. Dipolar relaxation , 1984 .

[8]  Brownian dynamics simulations: Statistical error of correlation functions , 1984 .

[9]  V. Parsegian Theory of liquid-crystal phase transitions in lipid + water systems , 1966 .

[10]  P. Hitchcock,et al.  Structural chemistry of 1,2 dilauroyl-DL-phosphatidylethanolamine: molecular conformation and intermolecular packing of phospholipids. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J. Seelig,et al.  Structural dynamics in phospholipid bilayers from deuterium spin–lattice relaxation time measurements , 1979 .

[12]  H. C. Andersen Probes of membrane structure. , 1978, Annual review of biochemistry.

[13]  R. M. Williams,et al.  Physical studies of phospholipids. VI. Thermotropic and lyotropic mesomorphism of some 1,2-diacyl-phosphatidylcholines (lecithins) , 1967 .

[14]  Gerald D. Williams,et al.  New view of lipid bilayer dynamics from 2H and 13C NMR relaxation time measurements. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[15]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[16]  Jean-Paul Ryckaert,et al.  Molecular dynamics of liquid alkanes , 1978 .

[17]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[18]  P. Wolynes,et al.  Derivation of Smoluchowski equations with corrections for Fokker-Planck and BGK collision models , 1979 .

[19]  Scott H. Northrup,et al.  Molecular mechanics of kink formation in lipid monolayers , 1984 .

[20]  W. Maier,et al.  Eine einfache molekulare Theorie des nematischen kristallinflüssigen Zustandes , 1958 .

[21]  R. Mazo,et al.  Calculations of the Diffusion Coefficients of n‐Alkanes , 1968 .

[22]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[23]  S. Marčelja,et al.  Physical principles of membrane organization , 1980, Quarterly Reviews of Biophysics.

[24]  B. Lindman,et al.  Nuclear magnetic resonance studies of chloride binding to proteins , 1978 .

[25]  Herman J. C. Berendsen,et al.  ALGORITHMS FOR BROWNIAN DYNAMICS , 1982 .

[26]  H. Berendsen,et al.  STOCHASTIC DYNAMICS FOR MOLECULES WITH CONSTRAINTS BROWNIAN DYNAMICS OF NORMAL-ALKANES , 1981 .

[27]  J. Lakowicz,et al.  Fluorescence spectroscopic investigations of the dynamic properties of proteins, membranes and nucleic acids. , 1980, Journal of biochemical and biophysical methods.

[28]  D. Gruen,et al.  A statistical mechanical model of the lipid bilayer above its phase transition. , 1980, Biochimica et biophysica acta.

[29]  G. Vanderkooi Conformational analysis of phosphatides: Mapping and minimization of the intramolecular energy , 1973 .

[30]  Jeffrey Skolnick,et al.  Kinetics of conformational transitions in chain molecules , 1980 .

[31]  A. K. Doolittle,et al.  Preparation and Physical Properties of a Series of n-Alkanes , 1951 .

[32]  R. Hosur,et al.  Conformational structure of glycerol trivalerate and its relation to phospholipids: Studies by NMR and potential energy calculations , 1978 .

[33]  J. Seelig,et al.  Deuterium order parameters in relation to thermodynamic properties of a phospholiped bilayer. A statistical mechanical interpretation. , 1975, Biochemistry.

[34]  S. Marčelja,et al.  Chain ordering in liquid crystals. II. Structure of bilayer membranes. , 1974, Biochimica et biophysica acta.

[35]  E Helfand Dynamics of Conformational Transitions in Polymers , 1984, Science.

[36]  John F. Nagle,et al.  Theory of the Main Lipid Bilayer Phase Transition , 1980 .

[37]  Martin Karplus,et al.  A simulation based model of NMR T1 relaxation in lipid bilayer vesicles , 1988 .

[38]  Hiromi Yamakawa,et al.  Modern Theory of Polymer Solutions , 1971 .

[39]  G Büldt,et al.  Neutron diffraction studies on phosphatidylcholine model membranes. II. Chain conformation and segmental disorder. , 1979, Journal of molecular biology.

[40]  S. Marčelja Molecular Model for Phase Transition in Biological Membranes , 1973, Nature.

[41]  K. Kinosita,et al.  A theory of fluorescence polarization decay in membranes. , 1977, Biophysical journal.

[42]  D. F. Bocian,et al.  NMR Studies of Membrane Structure and Dynamics , 1978 .

[43]  S. Chan,et al.  More on the motional state of lipid bilayer membranes: interpretation of order parameters obtained from nuclear magnetic resonance experiments. , 1977, Biochemistry.

[44]  G. Govil,et al.  Molecular orbital studies on the conformation of phospholipids. II. Preferred conformations of hydrocarbon chains and molecular organization in biomembranes. , 1975, Journal of theoretical biology.

[45]  Fritz Jähnigb Molecular theory of lipid membrane ordera) , 1979 .

[46]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1969 .

[47]  J. García de la Torre,et al.  Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications , 1981, Quarterly Reviews of Biophysics.

[48]  J. Bell Spectroscopy in Biochemistry: Volume II , 1981 .

[49]  H. Träuble,et al.  The movement of molecules across lipid membranes: A molecular theory , 1971, The Journal of Membrane Biology.

[50]  Robert Zwanzig,et al.  STATISTICAL ERROR DUE TO FINITE TIME AVERAGING IN COMPUTER EXPERIMENTS. , 1969 .

[51]  M. Karplus,et al.  Parametrization of the friction constant for stochastic simulations of polymers , 1988 .

[52]  J. Seelig,et al.  The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. , 1974, Biochemistry.

[53]  A. Azzi,et al.  The application of fluorescent probes in membrane studies , 1975, Quarterly Reviews of Biophysics.

[54]  W. F. van Gunsteren,et al.  Effect of constraints on the dynamics of macromolecules , 1982 .

[55]  M. Sundaralingam,et al.  Potential energy calculations on phospholipids. Preferred conformations with intramolecular stacking and mutally tilted hydrocarbon chain planes. , 1973, Biochemistry.

[56]  A. Szabó Theory of fluorescence depolarization in macromolecules and membranes , 1984 .

[57]  W. Pechhold Molekülbewegung in Polymeren , 1968 .

[58]  D. Chandler,et al.  Stochastic molecular dynamics study of trans–gauche isomerization processes in simple chain molecules , 1980 .

[59]  F. W. Wiegel,et al.  Simulation of a lipid monolayer using molecular dynamics , 1980, Nature.