Efficient Identification of the Pareto Optimal Set

In this paper, we focus on expensive multiobjective optimization problems and propose a method to predict an approximation of the Pareto optimal set using classification of sampled decision vectors as dominated or nondominated. The performance of our method, called EPIC, is demonstrated on a set of benchmark problems used in the multiobjective optimization literature and compared with state-of the-art methods, ParEGO and PAL. The initial results are promising and encourage further research in this direction.

[1]  T. Simpson,et al.  Comparative studies of metamodelling techniques under multiple modelling criteria , 2001 .

[2]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[3]  Kristin P. Bennett,et al.  Duality and Geometry in SVM Classifiers , 2000, ICML.

[4]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[5]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[6]  Aluizio F. R. Araújo,et al.  Correlation between diversity and hypervolume in evolutionary multiobjective optimization , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[7]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[8]  Andreas Krause,et al.  Active Learning for Multi-Objective Optimization , 2013, ICML.

[9]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[10]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[11]  Carlos A. Coello Coello,et al.  A Review of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective Optimization , 2010 .

[12]  Bianca Zadrozny,et al.  Transforming classifier scores into accurate multiclass probability estimates , 2002, KDD.

[13]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[14]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[15]  Henry P. Wynn,et al.  [Design and Analysis of Computer Experiments]: Rejoinder , 1989 .

[16]  T. Simpson,et al.  Use of Kriging Models to Approximate Deterministic Computer Models , 2005 .

[17]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[18]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[19]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[20]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[21]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[22]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[23]  H. Fang,et al.  Global response approximation with radial basis functions , 2006 .

[24]  Bernhard Sendhoff,et al.  On Test Functions for Evolutionary Multi-objective Optimization , 2004, PPSN.

[25]  Christian Fonteix,et al.  New Multicriteria Optimization Method Based on the Use of a Diploid Genetic Algorithm: Example of an Industrial Problem , 1995, Artificial Evolution.

[26]  Derek J. Pike,et al.  Empirical Model‐building and Response Surfaces. , 1988 .

[27]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[28]  P. Pardalos,et al.  Pareto optimality, game theory and equilibria , 2008 .