Rapidly swept continuous-wave cavity-ringdown spectroscopy

Abstract Continuous-wave (cw) cavity-ringdown (CRD) spectroscopy provides a highly sensitive way to measure optical absorption by observing the decay rate of light from a high-finesse optical cavity containing the sample of interest (usually gas-phase molecules). In rapidly swept cw-CRD spectroscopy, optical build-up and subsequent ringdown decay are initiated by rapidly sweeping the cavity length or the wavelength of the monochromatic tunable cw laser radiation, thereby establishing and interrupting optical resonance between the laser light and the longitudinal-mode frequencies of the cavity. We review the experimental methodology and applications of this technique, indicating its advantages and prospects for spectroscopic sensing.

[1]  Jun Ye,et al.  Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy , 1998 .

[2]  D. Romanini,et al.  CW cavity ring down spectroscopy , 1997 .

[3]  S. Tashkun,et al.  New CW-CRDS measurements and global modeling of 12C16O2 absolute line intensities in the 1.6 μm region , 2008 .

[4]  Chamini Herath,et al.  Fabrication and characterization of fiber loop ringdown evanescent field sensors , 2010 .

[5]  R. B. Reese,et al.  A novel multiple species ringdown spectrometer for in situ measurements of methane, carbon dioxide, and carbon isotope , 2008 .

[6]  P. Unwin,et al.  In-Situ Measurement of Colloidal Gold Adsorption on Functionalized Silica Surfaces , 2008 .

[7]  Alfred Kastler Transmission of light pulse through a Fabry-Perot interferometer , 1974 .

[8]  Rapid-Swept CW Cavity Ring-down Laser Spectroscopy for Carbon Isotope Analysis , 2006 .

[9]  Guillermo Orellana and David Haigh New Trends in Fiber-Optic Chemical and Biological Sensors , 2008 .

[10]  Fabien Bretenaker,et al.  Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses , 1997 .

[11]  Paul Rabinowitz,et al.  Trace moisture detection using continuous-wave cavity ring-down spectroscopy. , 2003, Analytical chemistry.

[12]  K. Lehmann,et al.  Long-term stability in continuous wave cavity ringdown spectroscopy experiments. , 2010, Applied optics.

[13]  James S. Harris,et al.  Optical heterodyne detection in cavity ring-down spectroscopy , 1998 .

[14]  J. Hahn,et al.  Theoretical investigation on the intracavity Doppler effect in continuous wave swept-cavity ringdown spectroscopy , 2004 .

[15]  C. Dreyer,et al.  Cavity Ringdown Spectroscopy in a Hollow Bragg Waveguide: Electromagnetic Theory and Modeling , 2009, Applied spectroscopy.

[16]  J. B. Paul,et al.  Cavity Ringdown Laser Absorption Spectroscopy: History, Development, and Application to Pulsed Molecular Beams. , 1997, Chemical reviews.

[17]  Yabai He,et al.  Swept-cavity ringdown absorption spectroscopy: Put your laser light in and shake it all about , 2002 .

[18]  Jun Ye,et al.  Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C 2 H 2 and C 2 HD , 1999 .

[19]  Zulfiqur Ali,et al.  Broadband cavity enhanced absorption spectroscopy as a detector for HPLC. , 2009, Analytical chemistry.

[20]  Kevin K. Lehmann,et al.  Author's Personal Copy Cw Cavity Ring-down Spectroscopy (crds) with a Semiconductor Optical Amplifier as Intensity Modulator , 2022 .

[21]  R. Zare,et al.  Use of Broadband, Continuous-Wave Diode Lasers in Cavity Ring-Down Spectroscopy for Liquid Samples , 2003, Applied spectroscopy.

[22]  S. Tashkun,et al.  CW-cavity ringdown spectroscopy of carbon dioxide isotopologues near 1.5 μm , 2006 .

[23]  Daniele Romanini,et al.  Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking , 2005 .

[24]  B. Orr,et al.  Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity , 2006 .

[25]  Richard N Zare,et al.  Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath. , 2002, Analytical chemistry.

[26]  O. Wolfbeis Fiber-optic chemical sensors and biosensors. , 2000, Analytical chemistry.

[27]  D. Atkinson Solving chemical problems of environmental importance using cavity ring-down spectroscopy. , 2003, The Analyst.

[28]  Roderic L. Jones,et al.  Broadband cavity ringdown spectroscopy of the NO3 radical , 2001 .

[29]  Jun Ye,et al.  Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 microm. , 2007, Optics letters.

[30]  Baoxia Li,et al.  Optical feedback cavity ring-down technique for accurate measurement of ultra-high reflectivity , 2008 .

[31]  R. Peverall,et al.  Optical feedback cavity enhanced absorption spectroscopy with diode lasers. , 2009, The Analyst.

[32]  C. Au,et al.  Investigation on Reverse Water–gas Shift over La2NiO4 Catalyst by Cw-cavity Enhanced Absorption Spectroscopy During CH4/CO2 Reforming , 2006 .

[33]  M S Feld,et al.  Cavity ring-down technique and its application to the measurement of ultraslow velocities. , 1995, Optics letters.

[34]  G. Stedman,et al.  Asymmetric response profile of a scanning Fabry-Pérot interferometer , 1993 .

[35]  Roderic L Jones,et al.  A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection. , 2008, The Review of scientific instruments.

[36]  Yabai He,et al.  Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity , 2000 .

[37]  Eric R. Crosson,et al.  High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique , 2010 .

[38]  Hans-Peter Loock,et al.  Chemical Sensing Using Fiber Cavity Ring-Down Spectroscopy , 2010, Sensors.

[39]  Daniele Romanini,et al.  High-sensitivity CW-cavity ringdown spectroscopy of 12CO2 near 1.5 μm , 2005 .

[40]  KoHse-HoingHaus Applied Combustion Diagnostics , 2002 .

[41]  M. Chan,et al.  High-resolution cavity enhanced absorption spectroscopy using phase-sensitive detection , 2003 .

[42]  G. Rempe,et al.  Measurement of ultralow losses in an optical interferometer. , 1992, Optics letters.

[43]  Jun Ye,et al.  References and Notes Supporting Online Material Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection , 2022 .

[44]  W. Syed,et al.  Precision continuous-wave cavity ringdown spectroscopy of CO2 at 1064 nm , 2010 .

[45]  Charles C. Harb,et al.  A laser-locked cavity ring-down spectrometer employing an analog detection scheme , 2000 .

[46]  Jill D. Berger,et al.  Tunable mems devices for optical networks , 2003 .

[47]  Benno Willke,et al.  Dynamic response of a Fabry–Perot interferometer , 1999 .

[48]  J A McKay,et al.  Development of laser mirrors of very high reflectivity using the cavity-attenuated phase-shift method. , 1981, Applied optics.

[49]  P. Unwin,et al.  Real-Time Monitoring of Polyaniline Nanoparticle Formation on Surfaces , 2009 .

[50]  B. Orr,et al.  Continuous-wave stimulated Raman gain spectroscopy with cavity ringdown detection , 2006 .

[51]  Daniele Romanini,et al.  Diode laser cavity ring down spectroscopy , 1997 .

[52]  Michael N. R. Ashfold,et al.  Cavity ring-down spectroscopy , 1998 .

[53]  Kaiyong Yang,et al.  Spectral ripple effect in continuous-wave fold-type cavity ring down spectroscopy , 2010 .

[54]  Johanna L. Miller,et al.  Cavity ring-down spectroscopy measurements of single aerosol particle extinction. I. The effect of position of a particle within the laser beam on extinction. , 2007, The Journal of chemical physics.

[55]  Grant A. D. Ritchie,et al.  4 Cavity ring-down and cavity enhanced spectroscopy using diode lasers , 2005 .

[56]  James S. Harris,et al.  Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization , 1997 .

[57]  Yabai He,et al.  Rapid measurement of cavity ringdown absorption spectra with a swept-frequency laser , 2004 .

[58]  R. Saykally,et al.  High resolution pulsed infrared cavity ringdown spectroscopy: Application to laser ablated carbon clusters , 2002 .

[59]  K. Lehmann,et al.  Effects of linear birefringence and polarization-dependent loss of supermirrors in cavity ring-down spectroscopy. , 2008, Applied optics.

[60]  Claire Vallance Innovations in cavity ringdown spectroscopy , 2005 .

[61]  V. Motto-Ros,et al.  Extensive characterization of the optical feedback cavity enhanced absorption spectroscopy (OF-CEAS) technique: ringdown-time calibration of the absorption scale , 2008 .

[62]  Glenn Jones,et al.  pH dependence of the crystal violet adsorption isotherm at the silica-water interface. , 2005, The journal of physical chemistry. B.

[63]  Noise in cavity ring-down spectroscopy caused by transverse mode coupling. , 2007, Optics express.

[64]  J. B. Paul,et al.  Broadband ringdown spectral photography. , 2001, Applied optics.

[65]  Yabai He,et al.  Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: rapid spectral sensing of gas-phase molecules. , 2005, Applied optics.

[66]  An-wen Liu,et al.  Ultrasensitive near-infrared cavity ring-down spectrometer for precise line profile measurement. , 2010, The Review of scientific instruments.

[67]  Tuomo von Lerber,et al.  Cavity-ring-down principle for fiber-optic resonators: experimental realization of bending loss and evanescent-field sensing. , 2002, Applied optics.

[68]  Eric R. Crosson,et al.  Cavity ring-down spectroscopy versus high-temperature conversion isotope ratio mass spectrometry; a case study on delta(2)H and delta(18)O of pure water samples and alcohol/water mixtures. , 2009, Rapid communications in mass spectrometry : RCM.

[69]  Daniele Romanini,et al.  Two schemes for trace detection using cavity ringdown spectroscopy , 2004 .

[70]  J. B. Paul,et al.  Peer Reviewed: Cavity Ringdown Laser Absorption Spectroscopy , 1997 .

[71]  Hans-Peter Loock,et al.  Ring-Down Absorption Spectroscopy for Analytical Microdevices , 2006 .

[72]  Richard N. Zare,et al.  High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance , 2009, Proceedings of the National Academy of Sciences.

[73]  J. J. Scherer,et al.  Cavity ring down dye laser spectroscopy of jet-cooled metal clusters : Cu2 and Cu3 , 1990 .

[74]  Jun Ruan,et al.  An approach of open-path gas sensor based on tunable diode laser absorption spectroscopy , 2008 .

[75]  L. Brown,et al.  Empirical line parameters of methane from 1.1 to 2.1 μm , 2005 .

[76]  R N Zare,et al.  Frequency-switched heterodyne cavity ringdown spectroscopy. , 2000, Optics letters.

[77]  A. M. Shaw,et al.  Interfacial pH at an isolated silica-water surface. , 2005, Journal of the American Chemical Society.

[78]  Kevin K. Lehmann,et al.  Evanescent field absorption in a passive optical fiber resonator using continuous-wave cavity ring-down spectroscopy , 2004 .

[79]  T. Stacewicz,et al.  Towards Supercontinuum Cavity Ring-Down Spectroscopy , 2009 .

[80]  A. M. Shaw,et al.  PH-controlled formation kinetics of self-assembled layers of thioctic acid on gold nanoparticles , 2007 .

[81]  J. H. Miller,et al.  Development of a multiple gas analyzer using cavity ringdown spectroscopy for use in advanced fire detection. , 2009, Applied optics.

[82]  Thierry Gonthiez,et al.  Multispecies breath analysis faster than a single respiratory cycle by optical-feedback cavity-enhanced absorption spectroscopy. , 2009, Journal of biomedical optics.

[83]  D. A. King,et al.  Simple diode pumping of a power-buildup cavity. , 1998, Optics letters.

[84]  M. Nix,et al.  Optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS) in a ring cavity , 2010 .

[85]  D. Romanini,et al.  High-speed cavity ringdown spectroscopy with increased spectral resolution by simultaneous laser and cavity tuning. , 2005, Optics express.

[86]  P. N. Butcher,et al.  The Elements of Nonlinear Optics , 1990 .

[87]  Martin Macko,et al.  Electronic DFB laser switching for continuous wave cavity ring-down spectroscopy , 2010 .

[88]  P. Woods,et al.  Development and Applications of Continuous-Wave Cavity Ring-Down Spectroscopy , 2008 .

[89]  Giel Berden,et al.  Cavity ring-down spectroscopy : techniques and applications , 2009 .

[90]  G. Berden,et al.  Cavity ring-down spectroscopy: Experimental schemes and applications , 2000 .

[91]  Yabai He,et al.  Optical heterodyne signal generation and detection in cavity ringdown spectroscopy based on a rapidly swept cavity , 2001 .

[92]  W. Ubachs,et al.  Cavity Ring-Down spectroscopy in analytical chemistry , 2009 .

[93]  Z. Sharp,et al.  Hydrogen isotope correction for laser instrument measurement bias at low water vapor concentration using conventional isotope analyses: application to measurements from Mauna Loa Observatory, Hawaii. , 2011, Rapid communications in mass spectrometry : RCM.

[94]  R. Zare,et al.  Measurement of the methyl radical concentration profile in a hot‐filament reactor , 1995 .

[95]  Giel Berden,et al.  Phase shift cavity ring down absorption spectroscopy , 1996 .

[96]  D. Spencer,et al.  Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method. , 1980, Applied optics.

[97]  Daniele Romanini,et al.  Cavity ringdown spectroscopy: broad band absolute absorption measurements , 1997 .

[98]  Xijia Gu,et al.  Fiber loop ring-down spectroscopy with a long-period grating cavity. , 2009, Optics letters.

[99]  Bruce A. Richman,et al.  Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide , 2006, Isotopes in environmental and health studies.

[100]  Marc N. Fiddler,et al.  Laser Spectroscopy for Atmospheric and Environmental Sensing , 2009, Sensors.

[101]  Daniele Romanini,et al.  Effects of laser phase noise on the injection of a high-finesse cavity. , 2002, Applied optics.

[102]  Frances S. Ligler,et al.  Optical biosensors : today and tomorrow , 2008 .

[103]  Michael Hippler,et al.  High-resolution cavity ring-down absorption spectroscopy of nitrous oxide and chloroform using a near-infrared cw diode laser , 1998 .

[104]  Kevin K Lehmann,et al.  Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source. , 2008, Optics express.

[105]  Hemoglobin adsorption isotherm at the silica-water interface with evanescent wave cavity ring-down spectroscopy. , 2005, Journal of biomedical optics.

[106]  G. Friedrichs Sensitive Absorption Methods for Quantitative Gas Phase Kinetic Measurements. Part 2: Cavity Ringdown Spectroscopy , 2008 .

[107]  J. Hahn,et al.  Uncertainty analysis of absolute concentration measurement with continuous-wave cavity ringdown spectroscopy. , 2001, Applied optics.

[108]  P. Unwin,et al.  Evanescent wave cavity ring-down spectroscopy in a thin-layer electrochemical cell. , 2006, Analytical chemistry.

[109]  J. B. Paul,et al.  INFRARED CAVITY RINGDOWN LASER ABSORPTION SPECTROSCOPY (IR-CRLAS) OF JET-COOLED WATER CLUSTERS , 1995 .

[110]  C. Kaminski,et al.  Following interfacial kinetics in real time using broadband evanescent wave cavity-enhanced absorption spectroscopy: a comparison of light-emitting diodes and supercontinuum sources. , 2010, The Analyst.

[111]  P. Elleaume,et al.  Diagnostic techniques and UV-induced degradation of the mirrors used in the Orsay storage ring free-electron laser. , 1985, Applied optics.

[112]  B. Orr,et al.  Simultaneous multi-laser, multi-species trace-level sensing of gas mixtures by rapidly swept continuous-wave cavity-ringdown spectroscopy. , 2010, Optics express.

[113]  Measurement of the linewidth of a continuous-wave laser with a cavity-length modulation technique , 1999 .

[114]  A. M. Shaw,et al.  Gold Nanoparticle Adsorption and Aggregation Kinetics at the Silica−Water Interface , 2007 .

[115]  Albert A. Ruth,et al.  Incoherent broad-band cavity-enhanced absorption spectroscopy , 2003 .

[116]  R. Zare,et al.  Ultratrace kinetic measurements of the reduction of methylene blue. , 2003, Journal of the American Chemical Society.

[117]  J. Laane Frontiers of molecular spectroscopy , 2009 .

[118]  E. Crosson,et al.  A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor , 2008 .

[119]  Kevin K. Lehmann,et al.  Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta , 1993 .

[120]  Barbara A. Paldus,et al.  An historical overview of cavity-enhanced methods , 2005 .

[121]  W. Simpson,et al.  Frequency-matched cavity ring-down spectroscopy , 1998 .

[122]  G. E. Stedman,et al.  Swept-frequency induced optical cavity ringing , 1991 .

[123]  Jin Kim,et al.  Optical-feedback cavity ring-down spectroscopy measurements of extinction by aerosol particles. , 2009, The journal of physical chemistry. A.

[124]  Roderic L Jones,et al.  Broad-band cavity ring-down spectroscopy. , 2003, Chemical reviews.

[125]  A. O’Keefe,et al.  Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources , 1988 .

[126]  C F Kaminski,et al.  Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source. , 2008, Optics express.

[127]  Jurgen Michel,et al.  Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators , 2008 .

[128]  S. Tashkun,et al.  High sensitivity CW-CRDS spectroscopy of 12C16O2, 16O12C17O and 16O12C18O between 5851 and 7045 cm−1: Line positions analysis and critical review of the current databases , 2008 .

[129]  K. Lehmann,et al.  Noise caused by a finite extinction ratio of the light modulator in CW cavity ring-down spectroscopy , 2009 .

[130]  Dudley E. Shallcross,et al.  Trace detection of methane using continuous wave cavity ring-down spectroscopy at 1.65 μm , 2002 .

[131]  D. Z. Anderson,et al.  Mirror reflectometer based on optical cavity decay time. , 1984, Applied optics.

[132]  Chuji Wang,et al.  Fiber Loop Ringdown — a Time-Domain Sensing Technique for Multi-Function Fiber Optic Sensor Platforms: Current Status and Design Perspectives , 2009, Sensors.

[133]  Martin Fechner,et al.  Cavity ring-down absorption spectrography based on filament-generated supercontinuum light. , 2009, Optics express.

[134]  D. Jackson The spherical Fabry—Perot interferometer as an instrument of high resolving power for use with external or with internal atomic beams , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[135]  Kevin K. Lehmann,et al.  Single-cell detection by cavity ring-down spectroscopy , 2004 .

[136]  F Ariese,et al.  Liquid-phase and evanescent-wave cavity ring-down spectroscopy in analytical chemistry. , 2009, Annual review of analytical chemistry.

[137]  A. Foltynowicz,et al.  Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry , 2007 .

[138]  Daniele Romanini,et al.  Shot-noise-limited measurement of sub–parts-per-trillion birefringence phase shift in a high-finesse cavity , 2010 .

[140]  B. Orr,et al.  Continuous-wave cavity-ringdown detection of stimulated Raman gain spectra , 2009 .

[141]  D. Romanini,et al.  Sub-ppb NO2 detection by optical feedback cavity-enhanced absorption spectroscopy with a blue diode laser , 2006 .

[142]  Roderic L. Jones,et al.  A broadband cavity ringdown spectrometer for in-situ measurements of atmospheric trace gases , 2005 .

[143]  J. Hahn,et al.  Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design. , 1999, Applied optics.

[144]  P. Rairoux,et al.  Mode-by-mode optical feedback: cavity ringdown spectroscopy , 2007 .

[145]  Robert A. Meyers,et al.  Encyclopedia of analytical chemistry : applications, theory and instrumentation , 2000 .

[146]  D. Romanini,et al.  Sensitive birefringence measurement in a high-finesse resonator using diode laser optical self-locking , 2002 .

[147]  R. Hanson,et al.  Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species. , 2000, Applied optics.

[148]  B. Orr,et al.  Cavity Ringdown Spectroscopy: New Approaches and Out Comes , 2001 .

[149]  David H. Parker,et al.  Coherent cavity ring down spectroscopy , 1994 .

[150]  D. Romanini,et al.  High-speed off-axis Cavity Ring-Down Spectroscopy with a re-entrant configuration for spectral resolution enhancement. , 2010, Optics express.

[151]  Brian J. Orr,et al.  Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases , 2002 .

[152]  P. Unwin,et al.  Evanescent wave cavity-based spectroscopic techniques as probes of interfacial processes. , 2011, Chemical Society reviews.

[153]  Kate L Bechtel,et al.  Moving beyond traditional UV-visible absorption detection: cavity ring-down spectroscopy for HPLC. , 2005, Analytical chemistry.

[154]  G. Meijer,et al.  Measurement of the beam intensity in a laser-desorption jet-cooling mass-spectrometer , 1995 .

[155]  L. Halonen,et al.  Laser-locked, high-repetition-rate cavity ringdown spectrometer , 2006 .

[156]  Daniele Romanini,et al.  A water isotope (2H, 17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications , 2006 .

[157]  Steven S Brown,et al.  Absorption spectroscopy in high-finesse cavities for atmospheric studies. , 2003, Chemical reviews.

[158]  J. Diettrich,et al.  Periodically locked continuous-wave cavity ringdown spectroscopy. , 2003, Applied optics.

[159]  J. B. Paul,et al.  Cavity ringdown laser absorption spectroscopy of the jet-cooled aluminum dimer , 1995 .

[160]  Johannes Orphal,et al.  High-resolution Fourier-transform cavity-enhanced absorption spectroscopy in the near-infrared using an incoherent broad-band light source. , 2008, Optics express.

[161]  Hans-Peter Loock,et al.  Optical Fiber Sensing Based on Reflection Laser Spectroscopy , 2010, Sensors.

[162]  Jun Ye,et al.  Cavity ringdown heterodyne spectroscopy: High sensitivity with microwatt light power , 2000 .

[163]  S. Kassi,et al.  High sensitivity absorption spectroscopy of methane at 80 K in the 1.58 μm transparency window: Temperature dependence and importance of the CH3D contribution , 2010 .