Highly Efficient Probabilistic Finite Element Model Updating Using Intelligent Inference With Incomplete Modal Information

A highly efficient probabilistic framework of finite element model updating in the presence of measurement noise/uncertainty using intelligent inference is presented. This framework uses incomplete modal measurement information as input and is built upon the Bayesian inference approach. To alleviate the computational cost, Metropolis–Hastings Markov chain Monte Carlo (MH MCMC) is adopted to reduce the size of samples required for repeated finite element modal analyses. Since adopting such a sampling technique in Bayesian model updating usually yields a sparse posterior probability density function (PDF) over the reduced parametric space, Gaussian process (GP) is then incorporated in order to enrich analysis results that can lead to a comprehensive posterior PDF. The PDF obtained with densely distributed data points allows us to find the most optimal model parameters with high fidelity. To facilitate the entire model updating process with automation, the algorithm is implemented under ANSYS Parametric Design Language (APDL) in ANSYS environment. The effectiveness of the new framework is demonstrated via systematic case studies. [DOI: 10.1115/1.4033965]

[1]  Jung-Ryul Lee,et al.  Structural health monitoring for a wind turbine system: a review of damage detection methods , 2008 .

[2]  Jyoti K. Sinha,et al.  Model Updating: A Tool for Reliable Modelling, Design Modification and Diagnosis , 2002 .

[3]  Boris A. Zárate,et al.  Bayesian model updating and prognosis of fatigue crack growth , 2012 .

[4]  Ernesto Monaco,et al.  A wave propagation and vibration-based approach for damage identification in structural components , 2009 .

[5]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[6]  Yang Liu,et al.  Model Updating of Complex Structures Using the Combination of Component Mode Synthesis and Kriging Predictor , 2014, TheScientificWorldJournal.

[7]  Huajiang Ouyang,et al.  Crack Identification of Cantilever Plates Based on a Kriging Surrogate Model. , 2013, Journal of vibration and acoustics.

[8]  Jiong Tang,et al.  Enhanced statistical damage identification using frequency-shift information with tunable piezoelectric transducer circuitry , 2008 .

[9]  Qiusheng Li,et al.  Finite element model updating for a high-rise structure based on ambient vibration measurements , 2004 .

[10]  Alireza Rahai,et al.  Damage assessment of structure using incomplete measured mode shapes , 2007 .

[11]  Volkmar Zabel,et al.  An automatic mode pairing strategy using an enhanced modal assurance criterion based on modal strain energies , 2010 .

[12]  Alex Lenkoski Understanding Computational Bayesian Statistics. W. M. Bolstad (2010). Hoboken, NJ, USA: Wiley. ISBN 978‐0‐470‐04609‐8. , 2011 .

[13]  Costas Papadimitriou,et al.  On prediction error correlation in Bayesian model updating , 2013 .

[14]  Jeremy E. Oakley,et al.  Bayesian sensitivity analysis of a nonlinear finite element model , 2012 .

[15]  Ricardo Perera,et al.  A stochastic model updating method for parameter variability quantification based on response surface models and Monte Carlo simulation , 2012 .

[16]  Matthias W. Seeger,et al.  Gaussian Processes For Machine Learning , 2004, Int. J. Neural Syst..

[17]  Hua-Peng Chen,et al.  Mode shape expansion using perturbed force approach , 2010 .

[18]  Fushun Liu,et al.  Direct mode-shape expansion of a spatially incomplete measured mode by a hybrid-vector modification , 2011 .

[19]  Richard Christenson,et al.  Rapid identification of properties of column-supported bridge-type structure by using vibratory response , 2016 .

[20]  Michel Ghosn,et al.  Modified subset simulation method for reliability analysis of structural systems , 2011 .

[21]  Z. Xia,et al.  Characterization of Dynamic Response of Structures With Uncertainty by Using Gaussian Processes , 2013 .

[22]  M. Friswell,et al.  Perturbation methods for the estimation of parameter variability in stochastic model updating , 2008 .

[23]  Wei-Xin Ren,et al.  Structural Finite Element Model Updating Using Ambient Vibration Test Results , 2005 .

[24]  Tshilidzi Marwala,et al.  Model selection in finite element model updating using the Bayesian evidence statistic , 2011 .

[25]  C. Pierre,et al.  Characteristic Constraint Modes for Component Mode Synthesis , 2001 .

[26]  Sondipon Adhikari,et al.  Structural dynamic analysis using Gaussian process emulators , 2010 .

[27]  Edoardo Patelli,et al.  General purpose software for efficient uncertainty management of large finite element models , 2012, Finite elements in analysis and design : the international journal of applied finite elements and computer aided engineering.

[28]  F M.I. MODEL REDUCTION USING DYNAMIC AND ITERATED IRS TECHNIQUES , .

[29]  Randall J. Allemang,et al.  THE MODAL ASSURANCE CRITERION–TWENTY YEARS OF USE AND ABUSE , 2003 .

[30]  G. Roeck,et al.  Structural damage identification of the highway bridge Z24 by FE model updating , 2004 .

[31]  Alireza Ture Savadkoohi,et al.  Finite element model updating of a semi‐rigid moment resisting structure , 2011 .

[32]  Sondipon Adhikari,et al.  Bayesian assimilation of multi-fidelity finite element models , 2012 .

[33]  Christian Soize Random matrix theory for modeling uncertainties in computational mechanics , 2005 .

[34]  Costas Papadimitriou,et al.  Component mode synthesis techniques for finite element model updating , 2013 .

[35]  Guido De Roeck,et al.  Damage identification of a reinforced concrete frame by finite element model updating using damage parameterization , 2008 .

[36]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[37]  J. Ching,et al.  Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging , 2007 .

[38]  Stephen P. Brooks,et al.  Markov chain Monte Carlo method and its application , 1998 .

[39]  Jiong Tang,et al.  Reducing Dynamic Response Variation Using NURBS Finite Element-Based Geometry Perturbation , 2015 .

[40]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[41]  C. Robert,et al.  Understanding Computational Bayesian Statistics , 2009 .

[42]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[43]  James L. Beck,et al.  New Bayesian Model Updating Algorithm Applied to a Structural Health Monitoring Benchmark , 2004 .

[44]  James L. Beck,et al.  Monitoring Structural Health Using a Probabilistic Measure , 2001 .

[45]  Amandeep Kaur,et al.  An introduction to neural network , 2016 .

[46]  Angel R. Martinez,et al.  Computational Statistics Handbook with MATLAB , 2001 .

[47]  Robert E. Melchers,et al.  A fast approximate method for parameter sensitivity estimation in Monte Carlo structural reliability , 2004 .

[48]  A. OHagan,et al.  Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[49]  Jiong Tang,et al.  Component Mode Synthesis Order-Reduction for Dynamic Analysis of Structure Modeled With NURBS Finite Element , 2016 .

[50]  T. Hou,et al.  Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification , 2008 .