An improved constitutive description of tensile behavior for CP-Ti at ambient and intermediate temperatures

[1]  Yu-hao Cao,et al.  Constitutive analysis of the hot deformation behavior of Fe–23Mn–2Al–0.2C twinning induced plasticity steel in consideration of strain , 2013 .

[2]  Fuguo Li,et al.  Flow behavior modeling of the 7050 aluminum alloy at elevated temperatures considering the compensation of strain , 2012 .

[3]  D. Zhu,et al.  Deformation mechanisms and kinetics of time-dependent twinning in an α-titanium alloy , 2012 .

[4]  Ali A. Roostaei,et al.  The high temperature flow behavior modeling of AZ81 magnesium alloy considering strain effects , 2012 .

[5]  Miaoquan Li,et al.  The deformation behavior and processing maps in the isothermal compression of 7A09 aluminum alloy , 2012 .

[6]  S. Ankem,et al.  Modeling interstitial diffusion controlled twinning in alpha titanium during low-temperature creep , 2011 .

[7]  Cheng Guo,et al.  Constitutive modelling for high temperature behavior of 1Cr12Ni3Mo2VNbN martensitic steel , 2011 .

[8]  W. Zeng,et al.  High-temperature deformation behavior of Ti60 titanium alloy , 2011 .

[9]  A. K. Bhaduri,et al.  A critical comparison of various data processing methods in simple uni-axial compression testing , 2011 .

[10]  Y. Lin,et al.  A critical review of experimental results and constitutive descriptions for metals and alloys in hot working , 2011 .

[11]  Taiying Liu,et al.  Constitutive equations for elevated temperature flow stress of Ti–6Al–4V alloy considering the effect of strain , 2011 .

[12]  A. Najafizadeh,et al.  Flow stress prediction at hot working conditions , 2010 .

[13]  Jiao Luo,et al.  The variation of strain rate sensitivity exponent and strain hardening exponent in isothermal compression of Ti–6Al–4V alloy , 2010 .

[14]  S. Jonsson,et al.  Deformation behaviour of commercially pure titanium during simple hot compression , 2009 .

[15]  S. Ankem,et al.  The effect of time-dependent twinning on low temperature (<0.25 ∗ Tm) creep of an alpha-titanium alloy , 2009 .

[16]  S. Jonsson,et al.  Constitutive equations for pure titanium at elevated temperatures , 2009 .

[17]  Jue Zhong,et al.  Constitutive modeling for elevated temperature flow behavior of 42CrMo steel , 2008 .

[18]  Jue Zhong,et al.  Prediction of 42CrMo steel flow stress at high temperature and strain rate , 2008 .

[19]  Miaoquan Li,et al.  Acquiring a novel constitutive equation of a TC6 alloy at high-temperature deformation , 2005 .

[20]  M. Mills,et al.  Phenomenological and microstructural analysis of room temperature creep in titanium alloys , 2000 .

[21]  M. Mills,et al.  Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an α/β titanium alloy , 1999 .

[22]  M. Mills,et al.  Mechanisms of primary creep in α/β titanium alloys at lower temperatures , 1997 .

[23]  K. Wu,et al.  Development of constitutive relationships for the hot deformation of boron microalloying TiAlCrV alloys , 1995 .

[24]  M. Ashby,et al.  Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics , 1982 .

[25]  Swadesh Kumar Singh,et al.  Constitutive models to predict flow stress in Austenitic Stainless Steel 316 at elevated temperatures , 2013 .

[26]  E. Sato,et al.  Distinguishing the ambient-temperature creep region in a deformation mechanism map of annealed CP-Ti , 2006 .