Generation of four-partite Greenberger-Horne-Zeilinger and W states by using a high-finesse bimodal cavity

We propose two schemes to engineer four-partite entangled Greenberger-Horne-Zeilinger (GHZ) and $W$ states in a deterministic way by using chains of (two-level) Rydberg atoms within the framework of cavity QED. These schemes are based on the resonant interaction of the atoms with a bimodal cavity that simultaneously supports, in contrast to a single-mode cavity, two independent modes of the photon field. In addition, we suggest the schemes to reveal the nonclassical correlations for the engineered GHZ and $W$ states. It is shown how these schemes can be extended in order to produce general $N$-partite entangled GHZ and $W$ states.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[3]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[4]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[5]  Roy,et al.  Tests of signal locality and Einstein-Bell locality for multiparticle systems. , 1991, Physical review letters.

[6]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[7]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[8]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[9]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[10]  J. Raimond,et al.  Generation of Einstein-Podolsky-Rosen Pairs of Atoms , 1997 .

[11]  H. Weinfurter,et al.  Observation of three-photon Greenberger-Horne-Zeilinger entanglement , 1998, quant-ph/9810035.

[12]  Seth Lloyd,et al.  Experimental demonstration of greenberger-horne-zeilinger correlations using nuclear magnetic resonance , 2000 .

[13]  P. Bertet,et al.  Step-by-step engineered multiparticle entanglement , 2000, Science.

[14]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[15]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[16]  H. Weinfurter,et al.  Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement , 2000, Nature.

[17]  S. Haroche,et al.  Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment , 2001, quant-ph/0105062.

[18]  G Weihs,et al.  Experimental demonstration of four-photon entanglement and high-fidelity teleportation. , 2001, Physical review letters.

[19]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[20]  Timothy F. Havel,et al.  Quantum erasers and probing classifications of entanglement via nuclear magnetic resonance , 2002 .

[21]  Engineering entanglement between two cavity modes , 2002, quant-ph/0201044.

[22]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.

[23]  G. Agarwal,et al.  Preparation of W, GHZ, and two-qutrit states using bimodal cavities , 2003, quant-ph/0311137.

[24]  Generation of entangled N-photon states in a two-mode Jaynes-Cummings model , 2002, quant-ph/0210138.

[25]  Christian Kurtsiefer,et al.  Experimental observation of four-photon entanglement from parametric down-conversion. , 2003, Physical review letters.

[26]  Christian Kurtsiefer,et al.  Three-photon W-state , 2003 .

[27]  M. S. Zubairy,et al.  Cavity-QED-based quantum phase gate , 2003 .

[28]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[29]  Christoph Becher,et al.  Control and Measurement of Three-Qubit Entangled States , 2004, Science.

[30]  Christian Kurtsiefer,et al.  Experimental realization of a three-qubit entangled W state. , 2004, Physical review letters.

[31]  Jean-Michel Raimond,et al.  Cavity Quantum Electrodynamics , 1993, Quantum Dynamics of Simple Systems.

[32]  M. Nemes,et al.  Environment assisted tunneling in microwave cavities , 2005 .

[33]  Stephan Fritzsche,et al.  Simulation of n-qubit quantum systems. II. Separability and entanglement , 2006, Comput. Phys. Commun..

[34]  Stephan Fritzsche,et al.  Simulation of n-qubit quantum systems. III. Quantum operations , 2007, Comput. Phys. Commun..

[35]  S. Fritzsche,et al.  On the role of the atom–cavity detuning in bimodal cavity experiments , 2007, 0711.2049.

[36]  杨贞标,et al.  Engineering three-dimensional maximally entangled states for two modes in a bimodal cavity , 2007 .

[37]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[38]  W. B. Cardoso,et al.  Accuracy of a teleported trapped field state inside a single bimodal cavity , 2007, 0708.3686.

[39]  Jean-Michel Raimond,et al.  Ultrahigh finesse Fabry-Pérot superconducting resonator , 2007 .