Identification of weakly coupled multiphysics problems. Application to the inverse problem of electrocardiography

This work addresses the inverse problem of electrocardiography from a new perspective, by combining electrical and mechanical measurements. Our strategy relies on the definition of a model of the electromechanical contraction which is registered on ECG data but also on measured mechanical displacements of the heart tissue typically extracted from medical images. In this respect, we establish in this work the convergence of a sequential estimator which combines for such coupled problems various state of the art sequential data assimilation methods in a unified consistent and efficient framework. Indeed, we aggregate a Luenberger observer for the mechanical state and a Reduced-Order Unscented Kalman Filter applied on the parameters to be identified and a POD projection of the electrical state. Then using synthetic data we show the benefits of our approach for the estimation of the electrical state of the ventricles along the heart beat compared with more classical strategies which only consider an electrophysiological model with ECG measurements. Our numerical results actually show that the mechanical measurements improve the identifiability of the electrical problem allowing to reconstruct the electrical state of the coupled system more precisely. Therefore, this work is intended to be a first proof of concept, with theoretical justifications and numerical investigations, of the advantage of using available multi-modal observations for the estimation and identification of an electromechanical model of the heart.

[1]  F. Roberge,et al.  Moving Dipole Inverse ECG and EEG Solutions , 1984, IEEE Transactions on Biomedical Engineering.

[2]  C. A. Figueroa,et al.  Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data , 2012, Biomechanics and Modeling in Mechanobiology.

[3]  Y. Rudy,et al.  Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia , 2004, Nature Medicine.

[4]  J. Nenonen,et al.  Activation Dynamics in Anisotropic Cardiac Tissue via Decoupling , 2004, Annals of Biomedical Engineering.

[5]  Alejandro Lopez Rincon,et al.  Computing the electrical activity of the heart with a dynamic inverse monodomain operator , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[6]  Christian Vergara,et al.  A Variational Approach for Estimating the Compliance of the Cardiovascular Tissue: An Inverse Fluid-Structure Interaction Problem , 2011, SIAM J. Sci. Comput..

[7]  R. Kalman,et al.  New results in linear prediction and filtering theory Trans. AMSE , 1961 .

[8]  Dominique Chapelle,et al.  A Galerkin strategy with Proper Orthogonal Decomposition for parameter-dependent problems – Analysis, assessments and applications to parameter estimation , 2013 .

[9]  Robert Michael Kirby,et al.  Inverse electrocardiographic source localization of ischemia: An optimization framework and finite element solution , 2013, J. Comput. Phys..

[10]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[11]  Miguel A. Fernández,et al.  Mathematical Modeling of Electrocardiograms: A Numerical Study , 2010, Annals of Biomedical Engineering.

[12]  P. Tallec,et al.  Filtering for distributed mechanical systems using position measurements: perspectives in medical imaging , 2009 .

[13]  R. Barr,et al.  Relating Epicardial to Body Surface Potential Distributions by Means of Transfer Coefficients Based on Geometry Measurements , 1977, IEEE Transactions on Biomedical Engineering.

[14]  Frédérique Clément,et al.  A Biomechanical Model of Muscle Contraction , 2001, MICCAI.

[15]  Frank B. Sachse,et al.  Computational Cardiology , 2004, Lecture Notes in Computer Science.

[16]  J. Blum,et al.  Back and forth nudging algorithm for data assimilation problems , 2005 .

[17]  P. Moireau,et al.  Sequential parameter estimation for fluid–structure problems: Application to hemodynamics , 2012, International journal for numerical methods in biomedical engineering.

[18]  P. Tallec,et al.  Joint state and parameter estimation for distributed mechanical systems , 2008 .

[19]  Andrew J. Pullan,et al.  Mathematically Modelling the Electrical Activity of the Heart: From Cell to Body Surface and Back Again , 2005 .

[20]  J. Goldberger,et al.  Transcutaneous multielectrode basket catheter for endocardial mapping and ablation of ventricular tachycardia in the pig. , 1997, Circulation.

[21]  Y. Rudy,et al.  Regularization of the inverse problem in electrocardiography: A model study , 1988 .

[22]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[23]  Qinghua Zhang,et al.  Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems , 2002, IEEE Trans. Autom. Control..

[24]  P. Tallec,et al.  An energy-preserving muscle tissue model: formulation and compatible discretizations , 2012 .

[25]  Geir Evensen,et al.  The ensemble Kalman filter for combined state and parameter estimation: MONTE CARLO TECHNIQUES FOR DATA ASSIMILATION IN LARGE SYSTEMS , 2009 .

[26]  P Moireau,et al.  Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model , 2012, Biomechanics and modeling in mechanobiology.

[27]  P. Boesiger,et al.  Accelerated whole‐heart 3D CSPAMM for myocardial motion quantification , 2008, Magnetic resonance in medicine.

[28]  D. Chapelle,et al.  Exponential Convergence of an Observer Based on Partial Field Measurements for the Wave Equation , 2012 .

[29]  Jeffrey K. Uhlmann,et al.  Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[30]  Jack Lee,et al.  Myocardial transversely isotropic material parameter estimation from in-silico measurements based on a reduced-order unscented Kalman filter. , 2011, Journal of the mechanical behavior of biomedical materials.

[31]  D. Chapelle,et al.  Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems , 2011 .

[32]  M. Lysaker,et al.  On the possibility for computing the transmembrane potential in the heart with a one shot method: an inverse problem. , 2007, Mathematical biosciences.

[33]  Adarsh Krishnamurthy,et al.  Patient-specific models of cardiac biomechanics , 2013, J. Comput. Phys..

[34]  M Boulakia,et al.  Reduced-order modeling for cardiac electrophysiology. Application to parameter identification. , 2012, International journal for numerical methods in biomedical engineering.

[35]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[36]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[37]  Ionel M. Navon,et al.  Data Assimilation for Geophysical Fluids , 2009 .

[38]  D. Luenberger An introduction to observers , 1971 .

[39]  Joakim Sundnes,et al.  Computing the electrical activity in the heart , 2006 .

[40]  D. Schaeffer,et al.  A two-current model for the dynamics of cardiac membrane , 2003, Bulletin of mathematical biology.

[41]  Robert Michael Kirby,et al.  Finite-Element-Based Discretization and Regularization Strategies for 3-D Inverse Electrocardiography , 2011, IEEE Transactions on Biomedical Engineering.

[42]  W. Fleming Deterministic nonlinear filtering , 1997 .

[43]  K. Mardal,et al.  On the use of the bidomain equations for computing the transmembrane potential throughout the heart wall: An inverse problem , 2006, 2006 Computers in Cardiology.

[44]  Mazyar Mirrahimi,et al.  Observer-based Hamiltonian identification for quantum systems , 2007, Autom..

[45]  Mark Potse,et al.  A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart , 2006, IEEE Transactions on Biomedical Engineering.

[46]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[47]  J. Hoke,et al.  The Initialization of Numerical Models by a Dynamic-Initialization Technique , 1976 .

[48]  Aslak Tveito,et al.  On the use of the resting potential and level set methods for identifying ischemic heart disease: An inverse problem , 2007, J. Comput. Phys..

[49]  A. Huxley Muscle structure and theories of contraction. , 1957, Progress in biophysics and biophysical chemistry.

[50]  Giuseppe Savaré,et al.  Degenerate Evolution Systems Modeling the Cardiac Electric Field at Micro- and Macroscopic Level , 2002 .

[51]  Muruhan Rathinam,et al.  A New Look at Proper Orthogonal Decomposition , 2003, SIAM J. Numer. Anal..

[52]  Alain Bensoussan,et al.  Filtrage optimal des systèmes linéaires , 1971 .

[53]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[54]  Marina Piccinelli,et al.  Applications of variational data assimilation in computational hemodynamics , 2012 .

[55]  G. Huiskamp,et al.  An improved method for estimating epicardial potentials from the body surface , 1998, IEEE Transactions on Biomedical Engineering.

[56]  R E Ideker,et al.  Detection and localization of multiple epicardial electrical generators by a two-dipole ranging technique. , 1977, Circulation research.

[57]  Robert Modre,et al.  A comparison of noninvasive reconstruction of epicardial versus transmembrane potentials in consideration of the null space , 2004, IEEE Transactions on Biomedical Engineering.

[58]  Y. Rudy,et al.  The use of temporal information in the regularization of the inverse problem of electrocardiography , 1990, IEEE Transactions on Biomedical Engineering.

[59]  Leslie Tung,et al.  A bi-domain model for describing ischemic myocardial d-c potentials , 1978 .

[60]  Cheng-Zhong Xu,et al.  Infinite Dimensional Observers for Vibrating Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[61]  M. Burger,et al.  Stability analysis of the inverse transmembrane potential problem in electrocardiography , 2010 .

[62]  Bin He,et al.  Noninvasive reconstruction of three-dimensional ventricular activation sequence from the inverse solution of distributed equivalent current density , 2006, IEEE Transactions on Medical Imaging.

[63]  Y. Rudy,et al.  A Noninvasive Imaging Modality for Cardiac Arrhythmias , 2000, Circulation.

[64]  D. Stauffer,et al.  Use of Four-Dimensional Data Assimilation in a Limited-Area Mesoscale Model. Part I: Experiments with Synoptic-Scale Data , 1990 .

[65]  P. Knabner,et al.  Adaptive methods for parameter identification in ground water hydrology , 1991 .

[66]  D. Chapelle,et al.  State observers of a vascular fluid-structure interaction model through measurements in the solid , 2013 .

[67]  Alejandro F. Frangi,et al.  Personalization of a cardiac electromechanical model using reduced order unscented Kalman filtering from regional volumes , 2013, Medical Image Anal..