On the Number of Kernel Elements of Automatic Sequences

We consider bi-infinite k-automatic sequences, i.e., maps \(f:\mathbb{Z} \to \mathcal{R}\) with values in a finite ring \(\mathcal{R}\). We study the dependence of the number of kernel elements on the particular choice of a k-residue set. We establish several upper estimates for the number of kernel elements, in particular, for decimation invariant- and periodic sequences.

[1]  G. Rauzy,et al.  Suites algébriques, automates et substitutions , 1980 .

[2]  Tor Helleseth,et al.  Sequences and their Applications , 1999, Discrete Mathematics and Theoretical Computer Science.

[3]  Guentcho Skordev,et al.  Decimation-invariant sequences and their automaticity , 2001, Theor. Comput. Sci..

[4]  Jeffrey Shallit,et al.  The Ubiquitous Prouhet-Thue-Morse Sequence , 1998, SETA.

[5]  André Barbé,et al.  Symmetries of decimation invariant sequences and digit sets , 2002, Theor. Comput. Sci..

[6]  Fritz von Haeseler,et al.  Automaticity of Solutions of Mahler Equations , 1998, SETA.