Coupled Multi-Electrode Array with a Sintered Ag/AgCl Counter/Reference Electrode to Investigate AA7050-T7451 and Type 316 Stainless Steel Galvanic Couple under Atmospheric Conditions

[1]  D. N. Travessa,et al.  The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminium alloys , 2004 .

[2]  Richard P. Gangloff,et al.  Effect of corrosion severity on fatigue evolution in Al–Zn–Mg–Cu , 2010 .

[3]  N. Birbilis,et al.  Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu alloys , 2010 .

[4]  Nick Birbilis,et al.  Effect of S-Phase Dissolution on the Corrosion and Stress Corrosion Cracking of an As-Rolled Al-Zn-Mg-Cu Alloy , 2012 .

[5]  J. Scully,et al.  Use of Coupled Multielectrode Arrays to Elucidate the pH Dependence of Copper Pitting in Potable Water , 2010 .

[6]  R. Kelly,et al.  Wetting phenomena and time of wetness in atmospheric corrosion: a review , 2012 .

[7]  Rudolph G. Buchheit,et al.  Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys An Experimental Survey and Discussion , 2005 .

[8]  F. Mansfeld,et al.  Galvanic Corrosion of Al Alloys I. Effect of Dissimilar Metal , 1974 .

[9]  Martin Stratmann,et al.  On the atmospheric corrosion of metals which are covered with thin electrolyte layers—I. Verification of the experimental technique , 1990 .

[10]  R. Buchheit,et al.  Investigation and Discussion of Characteristics for Intermetallic Phases Common to Aluminum Alloys as a Function of Solution pH , 2008 .

[11]  James M. Larsen,et al.  Driving forces for localized corrosion‐to‐fatigue crack transition in Al–Zn–Mg–Cu , 2011 .

[12]  F. Mansfeld,et al.  Potential distribution in the evans drop experiment , 1997 .

[13]  C. Cao,et al.  A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers , 2004 .

[14]  M. Stratmann The Investigation of the Corrosion Properties of Metals, Covered with Adsorbed Electrolyte Layers - A New Experimental Technique , 1987 .

[15]  K. Sieradzki,et al.  Copper redistribution during corrosion of aluminum alloys , 1999 .

[16]  R. Kelly,et al.  In Situ Confocal Laser Scanning Microscopy of AA 2024-T3 Corrosion Metrology I. Localized Corrosion of Particles , 2004 .

[17]  C. Hangarter,et al.  Electrochemical Characterization of Galvanic Couples Under Saline Droplets in a Simulated Atmospheric Environment , 2017 .

[18]  L. Zhen,et al.  Mechanism of Localized Breakdown of 7000 Series Aluminum Alloys , 2013 .

[19]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[20]  Xin-Mingm Zhang,et al.  Effect of processing parameters on quench sensitivity of an AA7050 sheet , 2011 .

[21]  J. Scully,et al.  On-demand release of corrosion-inhibiting ions from amorphous Al–Co–Ce alloys , 2005, Nature materials.

[22]  Veronica N. Rafla,et al.  Determination of Cathodic and Anodic Charge from Operando X-Ray Tomography Observation of Galvanic Corrosion of Aluminum Alloy 7050-T7451 and 304 Stainless Steel in a Simulated Fastener , 2015 .

[23]  J. Scully,et al.  Inhibition of the Oxygen Reduction Reaction on Copper with Cobalt, Cerium, and Molybdate Ions , 2005 .

[24]  A. Nishikata,et al.  AC impedance study on corrosion of 55%Al-Zn alloy-coated steel under thin electrolyte layers , 2000 .

[25]  D. Tanner,et al.  Quench sensitivity and tensile property inhomogeneity in 7010 forgings , 2001 .

[26]  Veronica N. Rafla,et al.  Operando Observation of Galvanic Corrosion Between Aluminum Alloy 7050-T7451 and 304 Stainless Steel in a Simulated Fastener Arrangement Using X-Ray Tomography , 2015 .

[27]  J. Scully,et al.  Experimental and Modeling Studies of the Oxygen Reduction Reaction on AA2024-T3 , 2005 .

[28]  S. Virtanen,et al.  Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys , 2007 .

[29]  Jing-Chie Lin,et al.  Effect of heat treatments on the tensile strength and SCC-resistance of AA7050 in an alkaline saline solution , 2006 .

[30]  Yongjun Tan,et al.  Inhibiting Localized Corrosion of Aluminum and Aluminum Alloy by Rare Earth Metal Compounds: Behaviors and Characteristics Observed Using an Electrochemically Integrated Multi-Electrode Array , 2013 .

[31]  C. R. Feng,et al.  Corrosion Fatigue Crack Initiation in Aluminum Alloys 7075 and 7050 , 2000 .

[32]  R. Kelly,et al.  Galvanically Induced Intergranular Corrosion of AA5083-H131 Under Atmospheric Exposure Conditions: Part 1—Experimental Characterization , 2013 .

[33]  J. L. Hudson,et al.  Origins of Persistent Interaction among Localized Corrosion Sites on Stainless Steel , 2004 .

[34]  N. Birbilis,et al.  Effect of solution treatment on the corrosion behaviour of aluminium alloy AA7150: Optimisation for corrosion resistance , 2011 .

[35]  G. Frankel,et al.  Corrosion of an Al―Mg―Si alloy under MgCl2 solution droplets , 2011 .

[36]  M. A. Przystupa,et al.  Microstructure based fatigue life predictions for thick plate 7050-T7451 airframe alloys , 1997 .

[37]  J. Scully,et al.  Mass-Transport-Limited Oxygen Reduction Reaction on AA2024-T3 and Selected Intermetallic Compounds in Chromate-Containing Solutions , 2001 .

[38]  R. Buchheit,et al.  Evidence for Cu Ion Formation by Dissolution and Dealloying the Al2CuMg Intermetallic Compound in Rotating Ring‐Disk Collection Experiments , 2000 .

[39]  A. Nishikata,et al.  Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer , 1996 .

[40]  R. Kelly,et al.  Cathodic Control of Intergranular Corrosion Propagation in Al-Mg Alloys Under Thin Film Conditions , 2016 .

[41]  J. Scully,et al.  Use of coupled multi-electrode arrays to advance the understanding of selected corrosion phenomena , 2007 .

[42]  R. Kelly,et al.  Editors' Choice—Electrolyte Film Thickness Effects on the Cathodic Current Availability in a Galvanic Couple , 2017 .

[43]  K. Sieradzki,et al.  Dealloying of Al2CuMg in Alkaline Media , 2000 .

[44]  R. Kelly,et al.  The Use of a Sintered Ag/AgCl Electrode as Both Reference and Counter Electrode for Electrochemical Measurements in Thin Film Electrolytes , 2015 .

[45]  Gad Frankel,et al.  Effect of Cu Content on Corrosion Behavior of 7xxx Series Aluminum Alloys , 2004 .

[46]  R. Kelly,et al.  Evaluation of the Maximum Pit Size Model on Stainless Steels under Thin Film Electrolyte Conditions , 2014 .

[47]  S. H. Zhang,et al.  Anodic processes on iron covered by thin, dilute electrolyte layers (I)—anodic polarisation , 1994 .

[48]  A. Deschamps,et al.  On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy , 2003 .

[49]  J. Scully,et al.  An electrochemical framework to explain the intergranular stress corrosion behavior in two Al-Cu-Mg-Ag alloys as a function of aging , 2007 .

[50]  Florian Mansfeld,et al.  Laboratory studies of atmospheric corrosion—I. Weight loss and electrochemical measurements , 1980 .

[51]  A. Nishikata,et al.  Influence of Electrolyte Layer Thickness and pH on the Initial Stage of the Atmospheric Corrosion of Iron , 1997 .

[52]  K. Sieradzki,et al.  Dealloying and corrosion of Al alloy 2024-T3 , 2002 .

[53]  C. Dong,et al.  Dependence of the corrosion behavior of aluminum alloy 7075 on the thin electrolyte layers , 2009 .

[54]  F. De Carlo,et al.  In situ X-ray tomography of intergranular corrosion of 2024 and 7050 aluminium alloys , 2010 .

[55]  G. Frankel,et al.  Role of Grain-Boundary Precipitates and Solute- Depleted Zone on the Intergranular Corrosion of Aluminum Alloy 7150 Role of Grain-Boundary Precipitates and Solute- Depleted Zone on the Intergranular Corrosion of Aluminum Alloy 7150 , 2002 .

[56]  R. A. Oriani,et al.  Application of Kelvin Microprobe to the Corrosion of Metals in Humid Atmospheres , 1991 .

[57]  R. Mishra,et al.  Structure-property correlations in Al 7050 and Al 7055 high-strength aluminum alloys , 2008 .

[58]  F. Mansfeld Evaluation of electrochemical techniques for monitoring of atmospheric corrosion phenomena , 1981 .

[59]  G. Frankel,et al.  Electrochemical Behavior of Thin Film Analogs of Mg ( Zn , Cu , Al ) 2 , 2001 .

[60]  Veronica N. Rafla,et al.  Operando Assessment of Galvanic Corrosion Between Al-Zn-Mg-Cu Alloy and a Stainless Steel Fastener Using X-ray Tomography , 2018 .

[61]  M. A. Przystupa,et al.  Characterizations of pore and constituent particle populations in 7050-T7451 aluminum plate alloys , 1998 .

[62]  M. Weyland,et al.  Role of nanostructure in pitting of Al–Cu–Mg alloys , 2010 .

[63]  T. Kosec,et al.  Monitoring copper corrosion in bentonite by means of a coupled multi-electrode array , 2017 .

[64]  J. Scully,et al.  Galvanic Couple Current and Potential Distribution between a Mg Electrode and 2024-T351 under Droplets Analyzed by Microelectrode Arrays , 2015 .

[65]  R. P. Grant,et al.  Local Dissolution Phenomena Associated with S Phase ( Al2CuMg ) Particles in Aluminum Alloy 2024‐T3 , 1997 .

[66]  Zhuoyuan Chen,et al.  Initial Corrosion of Pure Zinc Under NaCl Electrolyte Droplet Using a Zn-Pt-Pt Three-Electrode System , 2013, International Journal of Electrochemical Science.