A novel vertical comb-drive electrostatic actuator using a one layer process

This paper presents the design, fabrication and testing of a new residual stress gradient based vertical comb-drive actuator. Conventional vertical comb-drive actuators need two structural layers, i.e. one for the moving fingers and a second for the fixed fingers. A vertical comb-drive actuator based on a single structural layer micromachining process, using the residual stress gradient along the thickness of the nickel of the MetalMUMPs (Metal Multi-User MEMS process) fabrication process, is developed. The MetalMUMPs provides a 20 μm thick nickel film and is subject to residual stress gradients along its thickness. Two curve-up beams are devised to curve out of plane after release. The curve-up beams raise a plate with comb fingers above the substrate to form the moving fingers. The fixed comb fingers are connected to the substrate via anchors. When a voltage is applied across the moving and the fixed fingers, the moving fingers move down towards the fixed fingers. Experimental measurements on prototypes have verified the design principle. A vertical displacement of 4.81 µm at 150 V was measured.

[1]  S. Ueda,et al.  A rotational comb-driven micromirror with a large deflection angle and low drive voltage , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).

[2]  T. Kenny,et al.  Design of large deflection electrostatic actuators , 2003 .

[3]  Gabriel M. Rebeiz,et al.  A robust high power-handling (> 10 W) RF MEMS switched capacitor , 2011, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[4]  Michael Curt Elwenspoek,et al.  Comb-drive actuators for large displacements , 1996 .

[5]  P. Krulevitch,et al.  Vertical-actuated electrostatic comb drive with in situ capacitive position correction for application in phase shifting diffraction interferometry , 2003 .

[6]  C. R. Giles,et al.  Beam-steering micromirrors for large optical cross-connects , 2003 .

[7]  M. Rais-Zadeh,et al.  A Multimetal Surface Micromachining Process for Tunable RF MEMS Passives , 2012, Journal of Microelectromechanical Systems.

[8]  M. Wu,et al.  Angular vertical comb-driven tunable capacitor with high-tuning capabilities , 2004, Journal of Microelectromechanical Systems.

[9]  G. Rebeiz,et al.  High-Power RF MEMS Switched Capacitors Using a Thick Metal Process , 2013, IEEE Transactions on Microwave Theory and Techniques.

[10]  Jingwei Liu,et al.  CMOS–MEMS Lateral Electrothermal Actuators , 2008, Journal of Microelectromechanical Systems.

[11]  M. Wu,et al.  A scanning micromirror with angular comb drive actuation , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).

[12]  Dae-Hee Weon,et al.  High-Q micromachined three-dimensional integrated inductors for high-frequency applications , 2007 .

[13]  Tatsuya Ohguro,et al.  A high power-handling RF MEMS tunable capacitor using quadruple series capacitor structure , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[14]  Ray Bert,et al.  Book Review: Introduction to Transportation Systems by Joseph Sussman. Boston: Artech House, 2000 , 2002 .

[15]  Ai Qun Liu,et al.  Fabrication technique for microelectromechanical systems vertical comb-drive actuators on a monolithic silicon substrate , 2005 .

[16]  F. Fachin,et al.  Mechanics of Out-of-Plane MEMS via Postbuckling: Model-Experiment Demonstration Using CMOS , 2012, Journal of Microelectromechanical Systems.

[17]  Deepak Uttamchandani,et al.  Monolithic RF MEMS inductor using silicon MEMS foundry process , 2006 .

[18]  A tunable radio frequency MEMS inductor using MetalMUMPs , 2007 .

[19]  S. Duffy,et al.  MEMS microswitches for reconfigurable microwave circuitry , 2001, IEEE Microwave and Wireless Components Letters.

[20]  Gabriel M. Rebeiz,et al.  High power (> 10 W) RF MEMS switched capacitors , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[21]  William C. Tang,et al.  Laterally driven polysilicon resonant microstructures , 1989, IEEE Micro Electro Mechanical Systems, , Proceedings, 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots'.

[22]  Paul Verschure,et al.  The state of the art in biomimetics. , 2013, Bioinspiration & biomimetics.

[23]  Gabriel M Rebeiz,et al.  High-Reliability RF-MEMS Switched Capacitors With Digital and Analog Tuning Characteristics , 2010, IEEE Transactions on Microwave Theory and Techniques.

[24]  Jeong-Hyun Cho,et al.  Self-Assembly Based on Chromium/Copper Bilayers , 2009, Journal of Microelectromechanical Systems.

[25]  Brian D. Jensen,et al.  Shaped comb fingers for tailored electromechanical restoring force , 2003 .

[26]  G. Fedder,et al.  Vertical comb-finger capacitive actuation and sensing for CMOS-MEMS , 2002 .

[27]  A novel fabrication method of a vertical comb drive using a single SOI wafer for optical MEMS applications , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[28]  William C. Tang,et al.  Electrostatic Comb Drive Levitation And Control Method , 1992 .

[29]  A. Lázaro,et al.  Electrothermally Actuated RF MEMS Switches Suspended on a Low-Resistivity Substrate , 2007, Journal of Microelectromechanical Systems.

[30]  Chi-Hoon Jun,et al.  A self-aligned vertical comb-drive actuator on an SOI wafer for a 2D scanning micromirror , 2004 .

[31]  K. Entesari,et al.  Tuning in to RF MEMS , 2009, IEEE Microwave Magazine.

[32]  Mojgan Daneshmand,et al.  Thermally-actuated latching RF MEMS switch , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[33]  R. Mansour,et al.  Two movable plate nitride loaded MEMS variable capacitor , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[34]  Khalil Najafi,et al.  Vertical comb array microactuators , 1995 .

[35]  R.R. Mansour,et al.  Thermally Actuated Multiport RF MEMS Switches and Their Performance in a Vacuumed Environment , 2007, IEEE Transactions on Microwave Theory and Techniques.

[36]  Remeo J. Wiegerink,et al.  Comb drives: versatile microstructures for capacitive sensing and electrostatic actuation , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[37]  Siyuan He,et al.  Characterization of Young's modulus and residual stress gradient of MetalMUMPs electroplated nickel film , 2009 .

[38]  Chienliu Chang,et al.  Innovative micromachined microwave switch with very low insertion loss , 2000 .

[39]  David K. Fork,et al.  Out-of-plane high-Q inductors on low-resistance silicon , 2003 .

[40]  A. Sharon,et al.  Optimizing fiber coupling with a quasi-passive microoptical bench , 2005, Journal of Microelectromechanical Systems.

[41]  O. Solgaard,et al.  Self-aligned vertical electrostatic combdrives for micromirror actuation , 2003 .

[42]  Ki Bang Lee,et al.  Principles of Microelectromechanical Systems: Lee/Principles of MEMs , 2011 .