Finite horizon robust state estimation for uncertain finite-alphabet hidden Markov models with conditional relative entropy constraints

In this paper, we consider a robust state estimation problem for uncertain discrete-time, homogeneous, first-order, finite-state finite-alphabet hidden Markov models (HMMs). A class of time-varying uncertain HMMs is considered in which the uncertainty is sequentially described by a regular conditional relative entropy constraint on perturbed regular conditional probability measures given the observation sequence. For this class of uncertain HMMs, the robust state estimation problem is formulated as a constrained optimization problem. Using a Lagrange multiplier technique and a duality relationship for regular conditional relative entropy, the above problem is converted into an unconstrained optimization problem and a problem related to partial information risk-sensitive filtering. Furthermore, a measure transformation technique and an information state method are employed to solve this equivalent problem related to risk-sensitive filtering.

[1]  Ian R. Petersen,et al.  Finite Horizon Minimax Optimal Control of Stochastic Partially Observed Time Varying Uncertain Systems , 1999, Math. Control. Signals Syst..

[2]  Ian R. Petersen,et al.  Minimax optimal control of stochastic uncertain systems with relative entropy constraints , 2000, IEEE Trans. Autom. Control..

[3]  John B. Moore,et al.  Risk-sensitive filtering and smoothing for hidden Markov models , 1995 .

[4]  Steven I. Marcus,et al.  Estimation of hidden markov models: risk-sensitive filter banks and qualitative analysis of their sample paths , 2002, IEEE Trans. Autom. Control..

[5]  Gang George Yin,et al.  On nearly optimal controls of hybrid LQG problems , 1999, IEEE Trans. Autom. Control..

[6]  Ian R. Petersen,et al.  Robustness and risk-sensitive filtering , 2002, IEEE Trans. Autom. Control..

[7]  Bernard C. Levy,et al.  Robust least-squares estimation with a relative entropy constraint , 2004, IEEE Transactions on Information Theory.

[8]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[9]  Ian R. Petersen,et al.  Robust filtering of stochastic uncertain systems on an infinite time horizon , 2002 .

[10]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[11]  W. P. Malcolm,et al.  An Algorithmic Estimation Scheme for Hybrid Stochastic Systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[12]  Robert J. Elliott,et al.  Filtering with Discrete State Observations , 1997 .

[13]  P. Shields The Ergodic Theory of Discrete Sample Paths , 1996 .

[14]  Myung-Gon Yoon,et al.  On the worst-case disturbance of minimax optimal control , 2005, Autom..

[15]  Neri Merhav,et al.  Hidden Markov processes , 2002, IEEE Trans. Inf. Theory.

[16]  R. Elliott,et al.  Adaptive control of linear systems with Markov perturbations , 1998, IEEE Trans. Autom. Control..

[17]  J. Lynch,et al.  A weak convergence approach to the theory of large deviations , 1997 .

[18]  Ian R. Petersen,et al.  A duality relationship for regular conditional relative entropy , 2005 .

[19]  Ian R. Petersen,et al.  Robust finite horizon minimax filtering for discrete-time stochastic uncertain systems , 2004, Syst. Control. Lett..

[20]  John B. Moore,et al.  Hidden Markov Models: Estimation and Control , 1994 .

[21]  Ian R. Petersen,et al.  Probabilistic distances between finite-state finite-alphabet hidden Markov models , 2005, IEEE Transactions on Automatic Control.

[22]  Michel Loève,et al.  Probability Theory I , 1977 .

[23]  Kai Lai Chung,et al.  A Course in Probability Theory , 1949 .