Contact angle measurements by confocal microscopy for non-destructive microscale surface characterization.

[1]  C. Extrand Relation between contact angle and the cross-sectional area of small, sessile liquid drops. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[2]  Lars Montelius,et al.  Selective spatial localization of actomyosin motor function by chemical surface patterning. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[3]  Alf Månsson,et al.  Detection of small differences in actomyosin function using actin labeled with different phalloidin conjugates. , 2005, Analytical biochemistry.

[4]  Lars Montelius,et al.  Silanized surfaces for in vitro studies of actomyosin function and nanotechnology applications. , 2003, Analytical biochemistry.

[5]  A. Månsson,et al.  Multivariate statistics in analysis of data from the in vitro motility assay. , 2003, Analytical biochemistry.

[6]  J. Chatterjee Limiting conditions for applying the spherical section assumption in contact angle estimation. , 2003, Journal of colloid and interface science.

[7]  Lars Montelius,et al.  Actomyosin motility on nanostructured surfaces. , 2003, Biochemical and biophysical research communications.

[8]  M. Winnik,et al.  Characterization of Oil Droplets under a Polymer Film by Laser Scanning Confocal Fluorescence Microscopy , 2000 .

[9]  A. Amirfazli,et al.  Measurements of Line Tension for Solid−Liquid−Vapor Systems Using Drop Size Dependence of Contact Angles and Its Correlation with Solid−Liquid Interfacial Tension , 2000 .

[10]  H. Schulze,et al.  Some new observations on line tension of microscopic droplets , 1999 .

[11]  Daniel Y. Kwok,et al.  Contact angle measurement and contact angle interpretation , 1999 .

[12]  M. Salmeron,et al.  WETTING PROPERTIES AT THE SUBMICROMETER SCALE : A SCANNING POLARIZATION FORCE MICROSCOPY STUDY , 1998 .

[13]  Marmur Line Tension and the Intrinsic Contact Angle in Solid-Liquid-Fluid Systems , 1997, Journal of colloid and interface science.

[14]  M. Vignes-Adler,et al.  Wetting transition of n-alkanes on concentrated aqueous salt solutions. Line tension effect , 1997 .

[15]  Dongqing Li Drop size dependence of contact angles and line tensions of solid-liquid systems , 1996 .

[16]  Jan D. Miller,et al.  The effect of solid surface heterogeneity and roughness on the contact angle/drop (bubble) size relationship , 1994 .

[17]  H. Yamashita,et al.  Dynamic interaction between cardiac myosin isoforms modifies velocity of actomyosin sliding in vitro. , 1993, Circulation research.

[18]  J. Spudich,et al.  Assays for actin sliding movement over myosin-coated surfaces. , 1991, Methods in enzymology.

[19]  A. Nikolov,et al.  Mechanisms of Oil Removal from a Solid Surface in the Presence of Anionic Micellar Solutions , 1988 .

[20]  J. Spudich,et al.  Fluorescent actin filaments move on myosin fixed to a glass surface. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[21]  James A. Spudich,et al.  Chapter 18 Purification of Muscle Actin , 1982 .

[22]  R. Good,et al.  The effect of drop size on contact angle , 1979 .

[23]  B. A. Pethica The contact angle equilibrium , 1977 .

[24]  F. Petke,et al.  Temperature dependence of contact angles of liquids on polymeric solids , 1969 .