The robustness of some scale-spaces

There are several methods for forming a scale-space and they may be classified as being based on diffusion or morphology. However it is rare for the methods to be compared. Here we outline a method for such a comparison based on robustness and give results for linear diffusion, the most widely studied method, and a sieve (a new morphological method). We find that the standard diffusion-based systems are not as insensitive to noise and occlusion as one might wish.

[1]  H. Blum Biological shape and visual science (part I) , 1973 .

[2]  Philippe Salembier,et al.  Flat zones filtering, connected operators, and filters by reconstruction , 1995, IEEE Trans. Image Process..

[3]  J. Andrew Bangham Median and morphological scale space filtering and zero-crossings , 1994, Electronic Imaging.

[4]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Peter Johansen,et al.  Gaussian Scale-Space Theory , 1997, Computational Imaging and Vision.

[6]  Ingemar J. Cox,et al.  An Analysis of Camera Noise , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  J. Andrew Bangham,et al.  Multiscale recursive medians, scale-space, and transforms with applications to image processing , 1996, IEEE Trans. Image Process..

[8]  Dan Schonfeld,et al.  Optimal Morphological Filters for Pattern Restoration , 1989, Other Conferences.

[9]  Glenn Healey,et al.  Radiometric CCD camera calibration and noise estimation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  J. Andrew Bangham,et al.  Properties of a Series of Nested Median Filters, Namely the Data Sieve , 1993, IEEE Trans. Signal Process..

[11]  J. Serra Introduction to mathematical morphology , 1986 .

[12]  L. Vincent Graphs and mathematical morphology , 1989 .

[13]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[14]  J. Andrew Bangham,et al.  Morphological scale-space preserving transforms in many dimensions , 1996, J. Electronic Imaging.

[15]  Alexander Toet,et al.  Graph morphology , 1992, J. Vis. Commun. Image Represent..

[16]  Stephen M. Pizer,et al.  A Multiresolution Hierarchical Approach to Image Segmentation Based on Intensity Extrema , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Petros Maragos,et al.  Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[18]  Philippe Salembier,et al.  Connected operators and pyramids , 1993, Optics & Photonics.

[19]  J A Bangham,et al.  Data-sieving hydrophobicity plots. , 1988, Analytical biochemistry.

[20]  Stanley R Sternberg,et al.  Grayscale morphology , 1986 .

[21]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[22]  Luc Vincent,et al.  Morphological Area Openings and Closings for Grey-scale Images , 1994 .

[23]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[24]  Atsushi Imiya,et al.  On the History of Gaussian Scale-Space Axiomatics , 1997, Gaussian Scale-Space Theory.

[25]  G. Matheron Random Sets and Integral Geometry , 1976 .

[26]  J. Andrew Bangham,et al.  Scale-space from nonlinear filters , 1995, Proceedings of IEEE International Conference on Computer Vision.