Winglets: Visualizing Association with Uncertainty in Multi-class Scatterplots

This work proposes <italic>Winglets</italic>, an enhancement to the classic scatterplot to better perceptually pronounce multiple classes by improving the perception of association and uncertainty of points to their related cluster. Designed as a pair of dual-sided strokes belonging to a data point, <italic>Winglets</italic> leverage the Gestalt principle of <italic>Closure</italic> to shape the perception of the form of the clusters, rather than use an explicit divisive encoding. Through a subtle design of two dominant attributes, length and orientation, <italic>Winglets</italic> enable viewers to perform a mental completion of the clusters. A controlled user study was conducted to examine the efficiency of <italic>Winglets</italic> in perceiving the cluster association and the uncertainty of certain points. The results show <italic>Winglets</italic> form a more prominent association of points into clusters and improve the perception of associating uncertainty.

[1]  M. Sheelagh T. Carpendale,et al.  Bubble Sets: Revealing Set Relations with Isocontours over Existing Visualizations , 2009, IEEE Transactions on Visualization and Computer Graphics.

[2]  Pierre Dragicevic,et al.  A Declarative Rendering Model for Multiclass Density Maps , 2019, IEEE Transactions on Visualization and Computer Graphics.

[3]  George W. Fitzmaurice,et al.  Dynamic Opacity Optimization for Scatter Plots , 2015, CHI.

[4]  Chi-Wing Fu,et al.  Optimizing Color Assignment for Perception of Class Separability in Multiclass Scatterplots , 2019, IEEE Transactions on Visualization and Computer Graphics.

[5]  Jean-Michel Morel,et al.  Gestalt Theory and Computer Vision , 2004 .

[6]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[7]  Yong Wang,et al.  A Vector Field Design Approach to Animated Transitions , 2018, IEEE Transactions on Visualization and Computer Graphics.

[8]  Marcus A. Magnor,et al.  Combining automated analysis and visualization techniques for effective exploration of high-dimensional data , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[9]  John P. Lewis,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2009 Selecting Good Views of High-dimensional Data Using Class Consistency , 2022 .

[10]  Kun Zhou,et al.  Visual Abstraction and Exploration of Multi-class Scatterplots , 2014, IEEE Transactions on Visualization and Computer Graphics.

[11]  M. Wertheimer Untersuchungen zur Lehre von der Gestalt. II , 1923 .

[12]  Michael Gleicher,et al.  Scatterplots: Tasks, Data, and Designs , 2018, IEEE Transactions on Visualization and Computer Graphics.

[13]  R. Berns Billmeyer and Saltzman's Principles of Color Technology , 2000 .

[14]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[15]  S. Palmer Common region: A new principle of perceptual grouping , 1992, Cognitive Psychology.

[16]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[17]  Eric D. Ragan,et al.  Using Animation to Alleviate Overdraw in Multiclass Scatterplot Matrices , 2018, CHI.

[18]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[19]  Robert S. Laramee,et al.  Vector Glyphs for Surfaces: A Fast and Simple Glyph Placement Algorithm for Adaptive Resolution Meshes , 2008, VMV.

[20]  Cynthia A. Brewer,et al.  ColorBrewer in Print: A Catalog of Color Schemes for Maps , 2003 .

[21]  Min Chen,et al.  Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications , 2013, Eurographics.

[22]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[23]  M. Kubovy,et al.  The whole is equal to the sum of its parts: a probabilistic model of grouping by proximity and similarity in regular patterns. , 2008, Psychological review.

[24]  Vidya Setlur,et al.  An Engineering Model for Color Difference as a Function of Size , 2014, CIC.

[25]  Kwan-Liu Ma,et al.  Regression Cube: A Technique for Multidimensional Visual Exploration and Interactive Pattern Finding , 2014, TIIS.

[26]  Daniel A. Keim,et al.  Generalized Scatter Plots , 2010, Inf. Vis..

[27]  Jing Li,et al.  A model of symbol lightness discrimination in sparse scatterplots , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[28]  Tamara Munzner,et al.  Empirical Guidance on Scatterplot and Dimension Reduction Technique Choices , 2013, IEEE Transactions on Visualization and Computer Graphics.

[29]  Max Wertheimer,et al.  Untersuchungen zur Lehre von der Gestalt , .

[30]  Steven Franconeri,et al.  Perception of Average Value in Multiclass Scatterplots , 2013, IEEE Transactions on Visualization and Computer Graphics.

[31]  Thomas K. Landauer,et al.  Behavioral Research Methods in Human-Computer Interaction , 1997 .

[32]  Jacob Feldman,et al.  Perceptual Grouping by Selection of a Logically Minimal Model , 2003, International Journal of Computer Vision.

[33]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[34]  Daniel B. Carr,et al.  Scatterplot matrix techniques for large N , 1986 .

[35]  Heidrun Schumann,et al.  A new weaving technique for handling overlapping regions , 2010, AVI.

[36]  Kwan-Liu Ma,et al.  Flow-based scatterplots for sensitivity analysis , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[37]  Kwan-Liu Ma,et al.  The Generalized Sensitivity Scatterplot , 2013, IEEE Transactions on Visualization and Computer Graphics.

[38]  J. R. Pomerantz,et al.  A century of Gestalt psychology in visual perception: II. Conceptual and theoretical foundations. , 2012, Psychological bulletin.

[39]  Michael Gleicher,et al.  Splatterplots: Overcoming Overdraw in Scatter Plots , 2013, IEEE Transactions on Visualization and Computer Graphics.

[40]  Julie Delon,et al.  A Unified Framework for Detecting Groups and Application to Shape Recognition , 2007, Journal of Mathematical Imaging and Vision.

[41]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .