Pooled clone collections by multiplexed CRISPR-Cas12a-assisted gene tagging in yeast

[1]  Krisztina Gubicza,et al.  CRISPR/Cas12a-assisted PCR tagging of mammalian genes , 2018, bioRxiv.

[2]  Benjamin Dubreuil,et al.  YeastRGB: comparing the abundance and localization of yeast proteins across cells and libraries , 2018, Nucleic Acids Res..

[3]  Fumihito Arai,et al.  Intelligent Image-Activated Cell Sorting , 2018, Cell.

[4]  E. Levy,et al.  Genome-wide C-SWAT library for high-throughput yeast genome tagging , 2018, Nature Methods.

[5]  Anton Khmelinskii,et al.  Mapping Degradation Signals and Pathways in a Eukaryotic N-terminome. , 2018, Molecular cell.

[6]  James E. DiCarlo,et al.  High-throughput creation and functional profiling of DNA sequence variant libraries using CRISPR/Cas9 in yeast , 2018, Nature Biotechnology.

[7]  Attila Balint,et al.  Systematic analysis of complex genetic interactions , 2018, Science.

[8]  Robert P. St.Onge,et al.  Multiplexed precision genome editing with trackable genomic barcodes in yeast , 2018, Nature Biotechnology.

[9]  Anastasia Baryshnikova,et al.  Unification of Protein Abundance Datasets Yields a Quantitative Saccharomyces cerevisiae Proteome. , 2018, Cell systems.

[10]  Johannes A. Roubos,et al.  CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae , 2017, Yeast.

[11]  Jean-Marc Daran,et al.  FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae , 2017, Nucleic acids research.

[12]  Márton Hunyadi,et al.  National Academies of Sciences, Engineering, and Medicine (2015) The Integration of Immigrants into American Society. Washington, DC: The National Academies Press. 458 pages , 2017 .

[13]  P. Billon,et al.  CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons. , 2017, Molecular cell.

[14]  Junhao Fu,et al.  A ‘new lease of life’: FnCpf1 possesses DNA cleavage activity for genome editing in human cells , 2017, Nucleic acids research.

[15]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[16]  S. Kosuri,et al.  Highly parallel genome variant engineering with CRISPR/Cas9 , 2018, Nature Genetics.

[17]  Mazhar Adli,et al.  CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations , 2017, Nature Methods.

[18]  J. Haber,et al.  Rad51-mediated double-strand break repair and mismatch correction of divergent substrates , 2017, Nature.

[19]  Sasha F. Levy,et al.  A method for high‐throughput production of sequence‐verified DNA libraries and strain collections , 2017, Molecular systems biology.

[20]  Jin-Wu Nam,et al.  In vivo high-throughput profiling of CRISPR–Cpf1 activity , 2016, Nature Methods.

[21]  Ryan T Gill,et al.  Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering , 2016, Nature Biotechnology.

[22]  Division on Earth Gene Drives on the Horizon , 2016 .

[23]  A. Heger,et al.  UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy , 2016, bioRxiv.

[24]  Paul J. McMurdie,et al.  DADA2: High resolution sample inference from Illumina amplicon data , 2016, Nature Methods.

[25]  Matthias Meurer,et al.  One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy , 2016, Nature Methods.

[26]  David Baker,et al.  Multiplex pairwise assembly of array-derived DNA oligonucleotides , 2015, Nucleic acids research.

[27]  James E. DiCarlo,et al.  Safeguarding CRISPR-Cas9 gene drives in yeast , 2015, Nature Biotechnology.

[28]  A. Regev,et al.  Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System , 2015, Cell.

[29]  W. Huber,et al.  Protein quality control at the inner nuclear membrane , 2014, Nature.

[30]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[31]  Peter Rodgers,et al.  eulerAPE: Drawing Area-Proportional 3-Venn Diagrams Using Ellipses , 2014, PloS one.

[32]  G. Church,et al.  Large-scale de novo DNA synthesis: technologies and applications , 2014, Nature Methods.

[33]  Shiyou Zhu,et al.  High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells , 2014, Nature.

[34]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[35]  Edith D. Wong,et al.  The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now , 2013, G3: Genes, Genomes, Genetics.

[36]  Michael W. Davidson,et al.  A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum , 2013, Nature Methods.

[37]  Richard J Maraia,et al.  Transcription termination by the eukaryotic RNA polymerase III. , 2013, Biochimica et biophysica acta.

[38]  L. Steinmetz,et al.  Genotyping 1000 yeast strains by next-generation sequencing , 2013, BMC Genomics.

[39]  Brenda J. Andrews,et al.  Functional Analysis With a Barcoder Yeast Gene Overexpression System , 2012, G3: Genes | Genomes | Genetics.

[40]  Natasha S. Barteneva,et al.  Imaging Flow Cytometry , 2016, Methods in Molecular Biology.

[41]  Philipp J. Keller,et al.  Tandem fluorescent protein timers for in vivo analysis of protein dynamics , 2012, Nature Biotechnology.

[42]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[43]  S. Linnarsson,et al.  Counting absolute numbers of molecules using unique molecular identifiers , 2011, Nature Methods.

[44]  M. Mann,et al.  Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast , 2008, Nature.

[45]  U. K. Laemmli,et al.  The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. , 2008, Molecular cell.

[46]  C. Landry,et al.  An in Vivo Map of the Yeast Protein Interactome , 2008, Science.

[47]  E. O’Shea,et al.  Quantification of protein half-lives in the budding yeast proteome , 2006, Proceedings of the National Academy of Sciences.

[48]  J. Derisi,et al.  Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise , 2006, Nature.

[49]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[50]  T. Hughes,et al.  Mapping pathways and phenotypes by systematic gene overexpression. , 2006, Molecular cell.

[51]  Simon Kasif,et al.  GC/AT-content spikes as genomic punctuation marks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Michael Knop,et al.  A versatile toolbox for PCR‐based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes , 2004, Yeast.

[53]  K. Thorn,et al.  Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae , 2004, Yeast.

[54]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[55]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[56]  Chang‐Deng Hu,et al.  Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. , 2002, Molecular cell.

[57]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[58]  Gary D Bader,et al.  Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants , 2001, Science.

[59]  K. Siegers,et al.  Epitope tagging of yeast genes using a PCR‐based strategy: more tags and improved practical routines , 1999, Yeast.

[60]  P. Philippsen,et al.  Saccharomyces cerevisiae cells with defective spindle pole body outer plaques accomplish nuclear migration via half-bridge-organized microtubules. , 1998, Molecular biology of the cell.

[61]  Fred Winston,et al.  Construction of a set of convenient saccharomyces cerevisiae strains that are isogenic to S288C , 1995, Yeast.

[62]  O. Ozier-Kalogeropoulos,et al.  A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. , 1993, Nucleic acids research.

[63]  M. Johnston A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. , 1987, Microbiological reviews.

[64]  J W Szostak,et al.  Yeast transformation: a model system for the study of recombination. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Anton Khmelinskii,et al.  Analysis of protein dynamics with tandem fluorescent protein timers. , 2014, Methods in molecular biology.

[66]  Corey Nislow,et al.  Bugs, drugs and chemical genomics. , 2011, Nature chemical biology.

[67]  Y. Shiio,et al.  Epitope tagging. , 1995, Methods in enzymology.