Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations

Properties and potential applications of carbon nanotubes are summarized by emphasizing the aspects of nanoelectronics and nanoelectromechanical systems (NEMS). The main technologies for the assembly of nanodevices through nanomanipulations with scanning probe microscopes and nanorobotic manipulators are overviewed, focusing on that of nanotubes. Key techniques for nanoassembly include the preparation of nano building blocks and property characterization of them, the positioning of the building blocks with nanometer-scale resolution, and the connection of them. Nanorobotic manipulations, which are characterized by multiple degrees of freedom (DOFs) with both position and orientation control, independently actuated multiprobes, and a real-time observation system, are one of the most promising technologies for assembling complex nanodevices in three-dimensional space. With a nano laboratory, a prototype nanomanufacturing system based on a 16-DOF nanorobotic manipulation system, the assembly of nanodevices with multiwalled carbon nanotubes are presented. Nanotube-based building blocks are prepared by directly picking up, in situ property characterization, destructive fabrication, and shape modifications. Kinds of nanotube junctions, the fundamental elements for both nanoelectronics and NEMS, are constructed by positioning the building blocks together under the real-time observation with a field-emission scanning electron microscope, connecting them with naturally existing van der Waals forces, electron-beam-induced deposition, or mechanochemical bonding.

[1]  Fumihito Arai,et al.  Three-dimensional Nanorobotic Manipulations of Carbon Nanotubes , 2002, J. Robotics Mechatronics.

[2]  Charles M. Lieber,et al.  Nanomachining, manipulation and fabrication by force microscopy , 1996 .

[3]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[4]  Russell M. Taylor,et al.  Controlled manipulation of molecular samples with the nanoManipulator , 1999, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399).

[5]  Charles M. Lieber,et al.  High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies , 2001 .

[6]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[7]  Gerber,et al.  Atomic force microscope. , 1986, Physical review letters.

[8]  Fumihito Arai,et al.  3D nanorobotic manipulations of multi-walled carbon nanotubes , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[9]  Jari Penttilä,et al.  Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation , 1999 .

[10]  Pertti Hakonen,et al.  Single-electron transistor made of two crossing multiwalled carbon nanotubes and its noise properties , 2000 .

[11]  M. Washizu,et al.  Molecular surgery of DNA based on electrostatic micromanipulation , 1998, Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242).

[12]  Madhu Menon,et al.  Carbon Nanotube ``T Junctions'': Nanoscale Metal-Semiconductor-Metal Contact Devices , 1997 .

[13]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[14]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[15]  Francis Crick,et al.  The physical properties of cytoplasm. A study by means of the magnetic particle method. Part II. Theoretical treatment , 1950 .

[16]  Kim,et al.  Nanotube nanotweezers , 1999, Science.

[17]  Kunio Uchida,et al.  Conical beams from open nanotubes , 1997, Nature.

[18]  Fumihito Arai,et al.  Shape modification of carbon nanotubes and its applications in nanotube scissors , 2002, Proceedings of the 2nd IEEE Conference on Nanotechnology.

[19]  M. Dresselhaus,et al.  Tunneling conductance of connected carbon nanotubes. , 1996, Physical review. B, Condensed matter.

[20]  P. Nordlander,et al.  Unraveling Nanotubes: Field Emission from an Atomic Wire , 1995, Science.

[21]  Ikuo Ueda,et al.  Single-Bond Formation and Characterization with a Scanning Tunneling Microscope , 1999 .

[22]  K. Eric Drexler,et al.  Nanosystems - molecular machinery, manufacturing, and computation , 1992 .

[23]  Hans W. P. Koops,et al.  Characterization and Application of Materials Grown by Electron-Beam-Induced Deposition , 1994 .

[24]  P. Avouris,et al.  Dissociation of Individual Molecules with Electrons from the Tip of a Scanning Tunneling Microscope , 1992, Science.

[25]  Benedict,et al.  Pure carbon nanoscale devices: Nanotube heterojunctions. , 1996, Physical review letters.

[26]  Aristides A. G. Requicha,et al.  Robotic nanomanipulation with a scanning probe microscope in a networked computing environment , 1997 .

[27]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[28]  Fumihito Arai,et al.  Micro manipulation based on micro physics-strategy based on attractive force reduction and stress measurement , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[29]  Cees Dekker,et al.  Manipulation and Imaging of Individual Single‐Walled Carbon Nanotubes with an Atomic Force Microscope , 2000 .

[30]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[31]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[32]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[33]  Russell M. Taylor,et al.  Gearlike rolling motion mediated by commensurate contact: Carbon nanotubes on HOPG , 2000 .

[34]  C. Dekker,et al.  Electrical transport through carbon nanotube junctions created by mechanical manipulation , 2000, cond-mat/0009055.

[35]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[36]  P. Ajayan,et al.  Direct Synthesis of Long Single-Walled Carbon Nanotube Strands , 2002, Science.

[37]  H. Dai,et al.  Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.

[38]  Yoon,et al.  Crossed nanotube junctions , 2000, Science.

[39]  Fumihito Arai,et al.  3D nanorobotic manipulation of nano-order objects inside SEM , 2000, MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530).

[40]  Deron A. Walters,et al.  Elastic strain of freely suspended single-wall carbon nanotube ropes , 1999 .

[41]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[42]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[43]  Fumihito Arai,et al.  3D nanoassembly of carbon nanotubes through nanorobotic manipulations , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[44]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[45]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[46]  Alejandro Bugacov,et al.  Building and Manipulating Three-Dimensional and Linked Two-Dimensional Structures of Nanoparticles Using Scanning Force Microscopy , 1998 .

[47]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[48]  Zhen Yao,et al.  Carbon nanotube intramolecular junctions , 1999, Nature.

[49]  Herbert Shea,et al.  Carbon nanotubes: nanomechanics, manipulation, and electronic devices , 1999 .

[50]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[51]  Zettl,et al.  Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes , 2000, Science.

[52]  Richard Martel,et al.  Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces. , 1998 .

[53]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[54]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[55]  Charles M. Lieber,et al.  Growth of nanotubes for probe microscopy tips , 1999, Nature.

[56]  Chongwu Zhou,et al.  Carbon nanotube field-effect inverters , 2001 .

[57]  C. Gerber,et al.  Surface Studies by Scanning Tunneling Microscopy , 1982 .

[58]  Fumihito Arai,et al.  Prototyping design and automation of micro/nano manipulation system , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[59]  Ronald P. Andres,et al.  Fabrication of two‐dimensional arrays of nanometer‐size clusters with the atomic force microscope , 1995 .

[60]  Ralph Merkle,et al.  Exponential assembly , 2001 .

[61]  Mark J. Dyer,et al.  Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope , 1999 .

[62]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[63]  J R Tucker,et al.  Atomic-Scale Desorption Through Electronic and Vibrational Excitation Mechanisms , 1995, Science.

[64]  T. Fukuda,et al.  Fabrication and Property Analysis of MWNT Junctions through Nanorobotic Manipulations , 2002 .

[65]  Fumihito Arai,et al.  Three-dimensional nanoassembly of multi-walled carbon nanotubes through nanorobotic manipulations by using electron-beam-induced deposition , 2001, Proceedings of the 2001 1st IEEE Conference on Nanotechnology. IEEE-NANO 2001 (Cat. No.01EX516).

[66]  L. Samuelson,et al.  Controlled manipulation of nanoparticles with an atomic force microscope , 1995 .

[67]  P. Avouris Manipulation of Matter at the Atomic and Molecular Levels , 1995 .

[68]  Richard Superfine,et al.  Fabrication of nanometer-scale mechanical devices incorporating individual multiwalled carbon nanotubes as torsional springs , 2003 .

[69]  R. Celotta,et al.  Manipulation of Adsorbed Atoms and Creation of New Structures on Room-Temperature Surfaces with a Scanning Tunneling Microscope , 1991, Science.

[70]  Fujita,et al.  Electronic structure of graphene tubules based on C60. , 1992, Physical review. B, Condensed matter.

[71]  R. Superfine,et al.  Nanometre-scale rolling and sliding of carbon nanotubes , 1999, Nature.

[72]  M F Crommie,et al.  Confinement of Electrons to Quantum Corrals on a Metal Surface , 1993, Science.

[73]  Charles M. Lieber,et al.  Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes , 1996, Science.

[74]  F. Arai,et al.  Destructive constructions of nanostructures with carbon nanotubes through nanorobotic manipulation , 2004, IEEE/ASME Transactions on Mechatronics.

[75]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[76]  James K. Gimzewski,et al.  Room‐temperature repositioning of individual C60 molecules at Cu steps: Operation of a molecular counting device , 1996 .

[77]  R. Superfine,et al.  Bending and buckling of carbon nanotubes under large strain , 1997, Nature.

[78]  Fumihito Arai,et al.  DESTRUCTIVE CONSTRUCTION OF NANOSTRUCTURES WITH CARBON NANOTUBES , 2002 .

[79]  H. Hashimoto,et al.  Controlled pushing of nanoparticles: modeling and experiments , 2000 .

[80]  C. Dekker,et al.  Carbon Nanotube Single-Electron Transistors at Room Temperature , 2001, Science.

[81]  J. Hafner,et al.  Fabry - Perot interference in a nanotube electron waveguide , 2001, Nature.

[82]  Denis Wirtz,et al.  Magnetic tweezers for DNA micromanipulation , 2000 .

[83]  C. Quate,et al.  AUTOMATED PARALLEL HIGH-SPEED ATOMIC FORCE MICROSCOPY , 1998 .

[84]  Hongjie Dai,et al.  Patterned growth of single-walled carbon nanotubes on full 4-inch wafers , 2001 .

[85]  S. Xie,et al.  Very long carbon nanotubes , 1998, Nature.

[86]  Seiji Akita,et al.  Carbon-nanotube tips for scanning probe microscopy: Preparation by a controlled process and observation of deoxyribonucleic acid , 1999 .

[87]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[88]  Fumihito Arai,et al.  Nanoassembly of Carbon Nanotubes through Mechanochemical Nanorobotic Manipulations , 2003 .

[89]  P. Avouris,et al.  Field-Induced Nanometer- to Atomic-Scale Manipulation of Silicon Surfaces with the STM , 1991, Science.

[90]  Fumihito Arai,et al.  3-D Nanorobotic Manipulation of Nanometer-scale Objects , 2001, J. Robotics Mechatronics.

[91]  Fumihito Arai,et al.  Electron-beam-induced deposition with carbon nanotube emitters , 2002 .

[92]  Richard P. Feynman There's plenty of room at the bottom [data storage] , 1992, Journal of Microelectromechanical Systems.