Robust PCA and Robust Subspace Tracking: A Comparative Evaluation

This paper provides a comparative theoretical and experimental evaluation of solutions for robust PCA and robust subspace tracking (dynamic RPCA) that rely on the sparse+lowrank matrix decomposition formulation. The emphasis is on simple and provably correct methods. Experimental comparisons are shown for video layering (separate a given video into foreground and background layer videos) which is a key first step in simplifying many video analytics and computer vision tasks, e.g., video denoising or activity recognition.

[1]  Namrata Vaswani,et al.  Online (and Offline) Robust PCA: Novel Algorithms and Performance Guarantees , 2016, AISTATS.

[2]  Ioannis Mitliagkas,et al.  Memory Limited, Streaming PCA , 2013, NIPS.

[3]  Dacheng Tao,et al.  GoDec: Randomized Lowrank & Sparse Matrix Decomposition in Noisy Case , 2011, ICML.

[4]  Shuicheng Yan,et al.  Online Robust PCA via Stochastic Optimization , 2013, NIPS.

[5]  Martin Kleinsteuber,et al.  pROST: a smoothed $$\ell _p$$ℓp-norm robust online subspace tracking method for background subtraction in video , 2013, Machine Vision and Applications.

[6]  Namrata Vaswani,et al.  An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum , 2013, IEEE Transactions on Signal Processing.

[7]  Namrata Vaswani,et al.  Provable Dynamic Robust PCA or Robust Subspace Tracking , 2017, 2018 IEEE International Symposium on Information Theory (ISIT).

[8]  Soon Ki Jung,et al.  Robust background subtraction to global illumination changes via multiple features-based online robust principal components analysis with Markov random field , 2015, J. Electronic Imaging.

[9]  Sham M. Kakade,et al.  Robust Matrix Decomposition With Sparse Corruptions , 2011, IEEE Transactions on Information Theory.

[10]  Sajid Javed,et al.  Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery , 2017, IEEE Signal Processing Magazine.

[11]  Sajid Javed,et al.  Robust PCA, Subspace Learning, and Tracking , 2017 .

[12]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[13]  Namrata Vaswani,et al.  Robust PCA With Partial Subspace Knowledge , 2014, IEEE Transactions on Signal Processing.

[14]  Simon Haykin,et al.  Adaptive Signal Processing: Next Generation Solutions , 2010 .

[15]  Bin Yang,et al.  Projection approximation subspace tracking , 1995, IEEE Trans. Signal Process..

[16]  Loong Fah Cheong,et al.  Block-Sparse RPCA for Salient Motion Detection , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Laura Balzano,et al.  Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Jingdong Wang,et al.  A Probabilistic Approach to Robust Matrix Factorization , 2012, ECCV.

[19]  Fatih Murat Porikli,et al.  CDnet 2014: An Expanded Change Detection Benchmark Dataset , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[20]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[21]  Robert D. Nowak,et al.  Online identification and tracking of subspaces from highly incomplete information , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[22]  Constantine Caramanis,et al.  Fast Algorithms for Robust PCA via Gradient Descent , 2016, NIPS.

[23]  El-hadi Zahzah,et al.  LRSLibrary: Low-Rank and Sparse tools for Background Modeling and Subtraction in Videos , 2016 .

[24]  Namrata Vaswani,et al.  NEARLY OPTIMAL ROBUST SUBSPACE TRACKING: A UNIFIED APPROACH , 2017, 2018 IEEE Data Science Workshop (DSW).

[25]  Martin Kleinsteuber,et al.  pROST : A Smoothed Lp-norm Robust Online Subspace Tracking Method for Realtime Background Subtraction in Video , 2013, ArXiv.

[26]  A. Robert Calderbank,et al.  PETRELS: Parallel Subspace Estimation and Tracking by Recursive Least Squares From Partial Observations , 2012, IEEE Transactions on Signal Processing.

[27]  Namrata Vaswani,et al.  Recursive Robust PCA or Recursive Sparse Recovery in Large but Structured Noise , 2012, IEEE Transactions on Information Theory.

[28]  Stephen J. Wright,et al.  Local Convergence of an Algorithm for Subspace Identification from Partial Data , 2013, Found. Comput. Math..

[29]  Prateek Jain,et al.  Non-convex Robust PCA , 2014, NIPS.

[30]  Namrata Vaswani,et al.  A Fast and Memory-Efficient Algorithm for Robust PCA (MEROP) , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[31]  Namrata Vaswani,et al.  Performance guarantees for undersampled recursive sparse recovery in large but structured noise , 2013, 2013 IEEE Global Conference on Signal and Information Processing.

[32]  Namrata Vaswani,et al.  Recursive sparse recovery in large but correlated noise , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[33]  Prateek Jain,et al.  Nearly Optimal Robust Matrix Completion , 2016, ICML.