분산 감소 기법에 의한 몬테칼로 선량 계산 효율 평가

몬테칼로 계산은 다른 어떤 알고리즘보다 정확한 선량 계산 결과를 주지만 계산 시간이 오래 걸리는 단점이 있다. 본 연구에서는 Varian 600 C/D 선형가속기로부터지 6 MV 광자선에 대해 몬테칼로 계산을 사용하여 얻은 선량 분포가 측정에 의해 얻은 선량 분포와 2% 이내에서 서로 잘 일치하도록 하며 분산 감소 기법을 사용하여 계산 시간 단축 정도를 평가하였다. 그리고 연산 능력을 높여 계산 시간 단축 정도를 평가하여 분산 감소 기법을 사용한 경우와 연산 능력을 높인 경우 간에 계산 시간 단축 정도를 비교하였다. 몬테칼로 계산 코드로는 빔 모사를 위해 BEAMnrc 코드, 선량 계산을 위해 DOSXYZnrc 코트를 각각 사용하였는데 분산 감소 기법은 이 코드들에서 지원하는 방법들을 사용하였고 연산 능력을 높이는 방법으로는 컴퓨터 클러스터를 이용한 병렬 처리를 사용하였다. 비교 결과, 분산 감소 기법을 사용하여 계산 시간을 최대 1/25 이상 단축시킬 수 있었고 9대의 컴퓨터를 이용한 병렬 처리 결과 계산 시간을 1/9로 단축시킬 수 있었다. 계산 곁과의 정확성을 만족할 만한 수준으로 유지할 수 있다면 분산감소 기법을 포함한 간략화된 물리의 적용은 현 시점에서 몬테칼로 선량 계산 시간을 획기적으로 단축시킬 대안이 될 수 있다. 【The Monte Carlo calculation is the most accurate means of predicting radiation dose, but its accuracy is accompanied by an increase in the amount of time required to produce a statistically meaningful dose distribution. In this study, the effects on calculation time by introducing variance reduction techniques and increasing computing power, respectively, in the Monte Carlo dose calculation for a 6 MV photon beam from the Varian 600 C/D were estimated when maintaining accuracy of the Monte Carlo calculation results. The EGSnrc­based BEAMnrc code was used to simulate the beam and the EGSnrc­based DOSXYZnrc code to calculate dose distributions. Variance reduction techniques in the codes were used to describe reduced­physics, and a computer cluster consisting of ten PCs was built to execute parallel computing. As a result, time was more reduced by the use of variance reduction techniques than that by the increase of computing power. Because the use of the Monte Carlo dose calculation in clinical practice is yet limited by reducing the computational time only through improvements in computing power, introduction of reduced­physics into the Monte Carlo calculation is inevitable at this point. Therefore, a more active investigation of existing or new reduced­physics approaches is required.】