Precision Position/Force Interaction Control of a Piezoelectric Multimorph Microgripper for Microassembly

Precision position and force control is a critical issue for automated microassembly systems to handle micro-objects delicately. This paper presents two new approaches to regulating both position and contact force of a piezoelectric multimorph microgripper dedicated to microassembly tasks. One of the advantages of the proposed approaches lies in that they are capable of controlling the position and contact force of a gripper arm simultaneously. The methodology is easy to implement since neither a state observer nor a hysteresis model of the system is required. The first approach is a position-based sliding mode impedance control which converts the target impedance into a desired position trajectory to be tracked, and the second one is established on the basis of a proportional-integral type of sliding function of the impedance measure error. Their tracking performances are guaranteed by two devised discrete-time sliding mode control algorithms, whose stabilities in the presence of model uncertainties and disturbances are proved in theory. The effectiveness of both schemes are validated by experimental investigations on a glass microbead gripping task. Results show that both approaches are capable of accomplishing promising interaction control accuracy.

[1]  Nariman Sepehri,et al.  A limitation of position based impedance control in static force regulation: theory and experiments , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[2]  N. Chaillet,et al.  Mechanical and Control-Oriented Design of a Monolithic Piezoelectric Microgripper Using a New Topological Optimization Method , 2009, IEEE/ASME Transactions on Mechatronics.

[3]  Qingsong Xu,et al.  Adaptive Sliding Mode Control With Perturbation Estimation and PID Sliding Surface for Motion Tracking of a Piezo-Driven Micromanipulator , 2010, IEEE Transactions on Control Systems Technology.

[4]  Philippe Lutz,et al.  Active force control for robotic micro-assembly: Application to guiding tasks , 2010, 2010 IEEE International Conference on Robotics and Automation.

[5]  Yu Sun,et al.  Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback , 2008 .

[6]  Andrew A. Goldenberg,et al.  An approach to sliding-mode based control , 1995, IEEE Trans. Robotics Autom..

[7]  K. Furuta Sliding mode control of a discrete system , 1990 .

[8]  Yu Xie,et al.  Force Sensing and Manipulation Strategy in Robot-Assisted Microinjection on Zebrafish Embryos , 2011, IEEE/ASME Transactions on Mechatronics.

[9]  B. Nelson,et al.  Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field , 2007, Journal of Microelectromechanical Systems.

[10]  Vijay Kumar,et al.  Automated Assembly for Mesoscale Parts , 2011, IEEE Transactions on Automation Science and Engineering.

[11]  T. Low,et al.  Modeling of a three-layer piezoelectric bimorph beam with hysteresis , 1995 .

[12]  Philippe Lutz,et al.  Complete Open Loop Control of Hysteretic, Creeped, and Oscillating Piezoelectric Cantilevers , 2010, IEEE Transactions on Automation Science and Engineering.

[13]  Gary B. Lamont,et al.  Digital control systems--theory, hardware, software , 1985 .

[14]  Kok Kiong Tan,et al.  Design, Modeling, and Control of Piezoelectric Actuators for Intracytoplasmic Sperm Injection , 2007, IEEE Transactions on Control Systems Technology.

[15]  Micky Rakotondrabe,et al.  Development and Force/Position Control of a New Hybrid Thermo-Piezoelectric MicroGripper Dedicated to Micromanipulation Tasks , 2011, IEEE Transactions on Automation Science and Engineering.

[16]  Jian-Xin Xu,et al.  Discrete-Time Output Integral Sliding-Mode Control for a Piezomotor-Driven Linear Motion Stage , 2008, IEEE Transactions on Industrial Electronics.

[17]  Silvestro Micera,et al.  Towards a force-controlled microgripper for assembling biomedical microdevices , 2000 .

[18]  Sergej Fatikow,et al.  Towards Automated Nanoassembly With the Atomic Force Microscope: A Versatile Drift Compensation Procedure , 2009 .

[19]  S. O. R. Moheimani,et al.  Inverse-feedforward of charge-controlled piezopositioners q , qq , 2008 .

[20]  Max Q.-H. Meng,et al.  Impedance control with adaptation for robotic manipulations , 1991, IEEE Trans. Robotics Autom..

[21]  Sergej Fatikow,et al.  Nanorobotic Assembly and Focused Ion Beam Processing of Nanotube-Enhanced AFM Probes , 2012, IEEE Transactions on Automation Science and Engineering.

[22]  Tariq Rahman,et al.  The application of discrete-time adaptive impedance control to rehabilitation robot manipulators , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[23]  Xinghuo Yu,et al.  Sliding-Mode Control With Soft Computing: A Survey , 2009, IEEE Transactions on Industrial Electronics.

[24]  Seul Jung,et al.  Force Tracking Impedance Control for Robot Manipulators with an Unknown Environment: Theory, Simulation, and Experiment , 2001, Int. J. Robotics Res..

[25]  S. P. Chan,et al.  Generalized impedance control of robot for assembly tasks requiring compliant manipulation , 1996, IEEE Trans. Ind. Electron..

[26]  S. Lee,et al.  Intelligent control of manipulators interacting with an uncertain environment based on generalized impedance , 1991, Proceedings of the 1991 IEEE International Symposium on Intelligent Control.

[27]  Qingsong Xu A new method of force estimation in piezoelectric cantilever-based microgripper , 2012, 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).

[28]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[29]  Warren P. Seering,et al.  On dynamic models of robot force control , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[30]  S. O. R. Moheimani,et al.  Charge driven piezoelectric actuators for structural vibration control: issues and implementation , 2005 .

[31]  Hakan Elmali,et al.  Implementation of sliding mode control with perturbation estimation (SMCPE) , 1996, IEEE Trans. Control. Syst. Technol..

[32]  Qingsong Xu,et al.  Design and Development of a Flexure-Based Dual-Stage Nanopositioning System With Minimum Interference Behavior , 2012, IEEE Transactions on Automation Science and Engineering.

[33]  Santosh Devasia,et al.  Inverse-feedforward of charge-controlled piezopositioners , 2008 .

[34]  Qingsong Xu,et al.  Model Predictive Discrete-Time Sliding Mode Control of a Nanopositioning Piezostage Without Modeling Hysteresis , 2012, IEEE Transactions on Control Systems Technology.

[35]  Nicholas G. Dagalakis,et al.  Automated Multiprobe Microassembly Using Vision Feedback , 2012, IEEE Transactions on Robotics.

[36]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation , 1984, 1984 American Control Conference.

[37]  Bijan Shirinzadeh,et al.  Robust generalised impedance control of piezo-actuated flexure-based four-bar mechanisms for micro/nano manipulation , 2008 .

[38]  Qingsong Xu,et al.  Identification and Compensation of Piezoelectric Hysteresis Without Modeling Hysteresis Inverse , 2013, IEEE Transactions on Industrial Electronics.

[39]  N. Hogan,et al.  Impedance Control:An Approach to Manipulation,Parts I,II,III , 1985 .

[40]  O. Kaynak,et al.  On the stability of discrete-time sliding mode control systems , 1987 .

[41]  Nicholas G. Dagalakis,et al.  Force Control of Linear Motor Stages for Microassembly , 2003 .

[42]  C. Newcomb,et al.  Improving the linearity of piezoelectric ceramic actuators , 1982 .

[43]  Homayoun Seraji,et al.  Force Tracking in Impedance Control , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[44]  M. Tarokh A discrete-time adaptive control scheme for robot manipulators , 1990, J. Field Robotics.

[45]  Qingsong Xu,et al.  Micro-/Nanopositioning Using Model Predictive Output Integral Discrete Sliding Mode Control , 2012, IEEE Transactions on Industrial Electronics.

[46]  Asier Ibeas,et al.  Robust Sliding Control of Robotic Manipulators Based on a Heuristic Modification of the Sliding Gain , 2007, J. Intell. Robotic Syst..

[47]  C. Su,et al.  An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.