An ITS at secondary school conceived from the didactic of mathematics that integrates the approach by competences to the mathematical knowledge

Our aim in this paper is to show how students at secondary school level can improve their argumentative competence by means of an Intelligent Tutorial System (ITS) designed for learning geometry. After establishing the theoretical frame for our research, we compare the heuristic and discursive characteristics of some tutorial systems, including the one developed by our research team. Afterwards, we tackle the subject of complementarity between knowledge and competence in math class, and then we present an evaluation strategy of argumentative competence on the basis of relations within the subject-milieu system. Our study includes, particularly, structures of cognitive, semiotic and situational control associated to the development of argumentative competence in an e-Learning Environment. We also address the specificity of reference knowledge, the decontextualization of learning, the idea of mathematical proof, and the role of didactical agents.

[1]  Dominique Guin A Cognitive Analysis of Geometry Proof Focused on Intelligent Tutoring Systems , 1996 .

[2]  N. Balacheff,et al.  Preuves et réfutations: essai sur la logique de la découverte mathématique , 1984 .

[3]  Claire Margolinas,et al.  cK¢ Modèle de connaissances pour le calcul de situations didactiques , 2003 .

[4]  Vanda Luengo Some didactical and Epistemological Considerations in the Design of Educational Software: The Cabri-euclide Example , 2005, Int. J. Comput. Math. Learn..

[5]  Colette Laborde,et al.  Integration of Technology in the Design of Geometry Tasks with Cabri-Geometry , 2002, Int. J. Comput. Math. Learn..

[6]  Philippe R. Richard,et al.  STRATÉGIE ARGUMENTATIVE ET SYSTÈME TUTORIEL POUR L'APPRENTISSAGE INTERACTIF DE LA GÉOMÉTRIE , 2003 .

[7]  Mogens Allan Niss,et al.  MATHEMATICAL COMPETENCIES AND THE LEARNING OF MATHEMATICS: THE DANISH KOM PROJECT , 2003 .

[8]  Esma Aïmeur,et al.  An Open Architecture to Improve Mathematical Competence in High School , 2005 .

[9]  P. Rabardel Les hommes et les technologies; approche cognitive des instruments contemporains , 1995 .

[10]  C. Laborde Dynamic Geometry Environments as a Source of Rich Learning Contexts for the Complex Activity of Proving , 2000 .

[11]  Esma Aïmeur,et al.  Development of an Intelligent Tutorial System to Enhance Students’ Mathematical Competence in Problem Solving , 2005 .

[12]  M. Gobbi,et al.  Tuning educational structures in Europe: nursing , 2005 .

[13]  L. S. Vygotksy Mind in society: the development of higher psychological processes , 1978 .

[14]  Philippe R. Richard L'inférence figurale: Un pas de raisonnement discursivo-graphique , 2004 .

[15]  Philippe R. Richard,et al.  AgentGeom: a multiagent system for pedagogical support in geometric proof problems , 2007, Int. J. Comput. Math. Learn..

[16]  L. Vygotsky Mind in Society: The Development of Higher Psychological Processes: Harvard University Press , 1978 .

[17]  Mogens Allan Niss,et al.  Kompetencer og uddannelsesbeskrivelse , 1999 .

[18]  Vincent Aleven,et al.  Towards Tutorial Dialog to Support Self- Explanation: Adding Natural Language Understanding to a Cognitive Tutor * , 2001 .

[19]  L. Festinger,et al.  A Theory of Cognitive Dissonance , 2017 .

[20]  Sylvie Pesty,et al.  Baghera Assessment Project, designing an hybrid and emergent educational society , 2003 .