Electromigration-enhanced Kirkendall effect of Cu/Ti direct diffusion welding by sparking plasma sintering

[1]  H. Ke,et al.  Uncovering electromigration effect on densification during electrical field assisted sintering , 2022, Journal of Materials Processing Technology.

[2]  C. Li,et al.  Vacuum diffusion bonding of TC4 titanium alloy and T2 copper by a slow cooling heat treatment , 2022, Journal of Materials Processing Technology.

[3]  D. Deng,et al.  Vacuum diffusion bonding of Ti2AlNb alloy and TC4 alloy , 2021, Transactions of Nonferrous Metals Society of China.

[4]  T. Ikeda,et al.  Evaluation of Bonding Strength and Interfacial Resistance of Diffusion-Bonded Ag/Si Interfaces , 2021, MATERIALS TRANSACTIONS.

[5]  T. Yuan,et al.  The preferential growth behaviors of the intermetallics at the W/Co interface during spark plasma sintering , 2020 .

[6]  G. Khalaj,et al.  Investigating the effect of post weld heat treatment on corrosion properties of explosive bonded interface of AA5083/AA1050/SS 321 tubes , 2020, Materials Research Express.

[7]  H. Pouraliakbar,et al.  Effect of interfacial intermetallic compounds evolution on the mechanical response and fracture of layered Ti/Cu/Ti clad materials , 2020 .

[8]  K. Vecchio,et al.  Electromigration effect in Fe-Al diffusion couples with field-assisted sintering , 2020 .

[9]  I. Szlufarska,et al.  Plasticity without dislocations in a polycrystalline intermetallic , 2019, Nature Communications.

[10]  U. Mirsaidov,et al.  Interface-mediated Kirkendall effect and nanoscale void migration in bimetallic nanoparticles during interdiffusion , 2019, Nature Communications.

[11]  R. Liu,et al.  The microstructure and tensile properties of W/Ti multilayer composites prepared by spark plasma sintering , 2019, Journal of Alloys and Compounds.

[12]  Q. Shen,et al.  Low-temperature diffusion bonding of W/Mo joints with a thin Cu interlayer , 2018, Journal of Materials Processing Technology.

[13]  G. Khalaj,et al.  Effect of postweld heat treatment on interface microstructure and metallurgical properties of explosively welded bronze—carbon steel , 2018, Journal of Central South University.

[14]  Lai‐Chang Zhang,et al.  Reaction diffusion rate coefficient derivation by isothermal heat treatment in spark plasma sintering system , 2017 .

[15]  Praveen Kumar,et al.  Bifurcation of the Kirkendall marker plane and the role of Ni and other impurities on the growth of Kirkendall voids in the Cu–Sn system , 2017, 1804.09598.

[16]  M. Yan,et al.  First-principles investigation of structural, mechanical and electronic properties for Cu–Ti intermetallics , 2016 .

[17]  Naksoo Kim,et al.  Effect of Original Layer Thicknesses on the Interface Bonding and Mechanical Properties of Ti-Al Laminate Composites , 2016 .

[18]  G. Yao,et al.  Diffusion bonding in fabrication of aluminum foam sandwich panels , 2016 .

[19]  Q. Shen,et al.  Accelerated Bonding of Magnesium and Aluminum with a CuNi/Ag/CuNi Sandwich Interlayer by Plasma-Activated Sintering , 2016, Metallurgical and Materials Transactions A.

[20]  Jun Yanagimoto,et al.  Dissimilar joining of aluminum alloy and stainless steel thin sheets by thermally assisted plastic deformation , 2015 .

[21]  J. Monchoux,et al.  Electromigration experiments by spark plasma sintering in the silver–zinc system , 2015 .

[22]  Q. Shen,et al.  Microstructure and mechanical properties of TC4/oxygen-free copper joint with silver interlayer prepared by diffusion bonding , 2014 .

[23]  K. Edalati,et al.  High-pressure torsion for enhanced atomic diffusion and promoting solid-state reactions in the aluminum–copper system , 2013 .

[24]  Q. Shen,et al.  Interfacial Microstructure and Mechanical Strength of 93W/Ta Diffusion-Bonded Joints with Ni Interlayer , 2013, Metallurgical and Materials Transactions A.

[25]  B. Kashyap,et al.  Diffusion characteristics in the Cu–Ti system , 2012 .

[26]  W. Kaplan,et al.  Solid–solid interface reconstruction at equilibrated Ni–Al2O3 interfaces , 2012 .

[27]  李应举 Influence of Electric Current on Kirkendall Diffusion of Zn/Cu Couples , 2009 .

[28]  Shanshan Lan,et al.  Intensified sintering of iron powders under the action of an electric field: Effect of technologic parameter on sintering densification , 2008 .

[29]  A. Paul,et al.  Bifurcation of the Kirkendall plane during interdiffusion in the intermetallic compound β-NiAl , 2004 .

[30]  A. Paul,et al.  The Kirkendall effect in multiphase diffusion , 2004 .

[31]  H. Okamoto Cu-Ti (Copper-Titanium) , 2002 .

[32]  Zuhair A. Munir,et al.  Electromigration effects in Al-Au multilayers , 2001 .

[33]  A. Pasturel,et al.  Enthalpies of formation of Ti?Cu intermetallic and amorphous phases , 1997 .

[34]  Y. Iijima,et al.  Diffusion of copper, silver and gold in α-titanium , 1995 .

[35]  J. J. Clement,et al.  Electromigration in copper conductors , 1995 .

[36]  P. Ho,et al.  Electromigration in metals , 1989 .

[37]  Y. Iijima,et al.  Diffusion of titanium in copper , 1977 .

[38]  F. Seitz,et al.  On the porosity observed in the Kirkendall effect , 1953 .

[39]  B. Mishra,et al.  Interfacial reaction and microstructure study of DSS/Cu/Ti64 diffusion-welded couple , 2017, Welding in the World.

[40]  Zuhair A. Munir,et al.  Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process , 2011 .

[41]  A. Ng,et al.  Pressure ionization in dense plasmas , 1999 .

[42]  A. Smigelskas Zinc diffusion in alpha brass , 1947 .