Stereotactic Body Radiation Therapy (SBRT) for adrenal metastases

Purpose:To compare advanced treatment techniques with photons and protons as a stereotactic body radiation therapy (SBRT) for adrenal glands metastases.Materials and Methods:Planning computer tomographic (CT) scans of 10 patients were selected. A total dose of 45 Gy in 7.5 Gy fractions was prescribed. Organs at risk (OAR) were liver and kidneys. Dose–volume metrics were defined to quantify quality of plans assessing target coverage and sparing of organs at risk. Plans for RapidArc, intensity-modulated radiotherapy (IMRT), dynamic conformal arcs, 3D conformal static fields, and intensity modulated protons were compared. The main planning objective for the clinical target volume (CTV) was to cover 100% of the volume with 95% (V95% = 100%) and to keep the maximum dose below 107% of the prescribed dose (V107% = 0%). Planning objective for planning target volume (PTV) was V95% > 80%. For kidneys, the general planning objective was V15Gy < 35% and for liver V15Gy < (liver volume–700 cm3).Results:All techniques achieved the minimum and maximum dose objective for CTV and PTV, D5–95% ranged from 1 Gy (protons) to 1.6 Gy (conformal static fields) on CTV. Maximal organ at risk sparing was achieved by protons. RapidArc presented the second lowest dose bath (V10Gy and integral dose) after protons and the best conformality together with IMRT.Conclusions:Stereotactic body radiation therapy (SBRT) to adrenal glands metastases is achievable with several advanced techniques with either photons or protons. The intensity modulated approaches using either static fields, dynamic arcs or protons are superior to the other conformal solutions. For their simplicity, IMRT or RapidArc should be considered as the first option radiation treatment for those patients not eligible for proton treatment.Ziel:Diese Studie vergleicht fortgeschrittene Bestrahlungstechniken mit Photonen und Protonen bei der stereotaktischen Körperbestrahlung von Metastasen in Nebennieren.Material und Methodik:Es wurden Planungs-CTs von 10 Patienten ausgewählt und eine Dosis von 45 Gy mit einer Fraktionierungsdosis von 7.5 Gy verschrieben. Die Leber und die Nieren wurden als kritische Organe eingezeichnet. Es wurde eine Dosis-Volumen-Metrik zur Quantifizierung der Planqualität in Bezug auf die Zielvolumenabdeckung und die Schonung der kritischen Organe erstellt. RapidArc-, IMRT-, dynamisch konformale Rotations-, 3D konformale Pläne und intensitätsmodulierte Protonenpläne wurden verglichen. Die Planungsvorgaben für das CTV war die 100%ige Abdeckung des Volumens mit 95% der Verschreibungsdosis (V95% = 100%) und die Einhaltung einer maximalen Dosis unterhalb von 107% der Verschreibungsdosis (V107% = 0%). Die Planungsvorgabe für das PTV war V95% > 80%., für die Nieren V15Gy < 35% und für die Leber V15Gy < (Lebervolumen–700 cm3).Ergebnisse:Alle Bestrahlungstechniken erfüllten die minimalen und maximalen Dosisvorgaben für das CTV und das PTV.D5–95% reichten von 1 Gy (Protonen) bis zu 1,6 Gy (konformale statische Felder) beim CTV. Die maximale Schonung der kritischen Organe wurde mit der Protonentechnik erzielt. Die RapidArc-Technik zeigte das zweitniedrigste Dosisbad (V10Gy und integrale Dosis) nach den Protonen und die beste Konformität zusammen mit der IMRT-Technik.Schlussfolgerung:Die stereotaktische Körperbestrahlungstherapie von Metastasen in Nebennieren ist mit mehreren fortgeschrittenen Bestrahlungstechniken mit Photonen oder Protonen durchführbar. Die intensitätsmodulierten Methoden, entweder mit statischen Einstrahlrichtungen, dynamischen Rotationen oder Protonen, sind den anderen konformalen Techniken überlegen. Dank ihrer Einfachheit sollte die IMRT- oder die RapidArc-Technik als erste Option bei der Bestrahlung von Patienten, welche für eine Protonenbehandlung nicht in Frage kommen, berücksichtigt werden.

[1]  S. Senan,et al.  Rapid delivery of stereotactic radiotherapy for peripheral lung tumors using volumetric intensity-modulated arcs. , 2009, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[2]  E Brian Butler,et al.  Versatility of the Novalis System to Deliver Image-Guided Stereotactic Body Radiation Therapy (SBRT) for Various Anatomical Sites , 2007, Technology in cancer research & treatment.

[3]  Amy Y. Chen,et al.  Failure after radiation therapy or conservative surgery in the head and neck: The role of salvage total laryngectomy , 2004 .

[4]  T. Fojo,et al.  Radiofrequency ablation of adrenal tumors and adrenocortical carcinoma metastases , 2003, Cancer.

[5]  Robert L. Foote,et al.  Stereotactic Body Radiotherapy in the Treatment of Adrenal Metastases , 2013, American journal of clinical oncology.

[6]  Suresh Senan,et al.  Volumetric Modulated Arc Therapy for Advanced Pancreatic Cancer , 2010, Strahlentherapie und Onkologie.

[7]  J. Petersen,et al.  Phase II study on stereotactic body radiotherapy of colorectal metastases , 2006, Acta oncologica.

[8]  Pietro Mancosu,et al.  Critical appraisal of volumetric modulated arc therapy in stereotactic body radiation therapy for metastases to abdominal lymph nodes. , 2009, International journal of radiation oncology, biology, physics.

[9]  Shinichi Shimizu,et al.  Real-time tumor-tracking radiotherapy for adrenal tumors. , 2008, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[10]  L. Solin,et al.  Palliative radiotherapy for symptomatic adrenal metastases , 1990, Cancer.

[11]  V. Fonteyne,et al.  Intensity-Modulated Arc Therapy with Simultaneous Integrated Boost in the Treatment of Primary Irresectable Cervical Cancer , 2009, Strahlentherapie und Onkologie (Print).

[12]  S. Short,et al.  Palliation of symptomatic adrenal gland metastases by radiotherapy. , 1996, Clinical oncology (Royal College of Radiologists (Great Britain)).

[13]  J. J. Buckley,et al.  Report of Three Cases , 1962 .

[14]  Lei Xing,et al.  Stereotactic body radiation therapy in multiple organ sites. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[15]  R. Weichselbaum,et al.  A rationale for the targeted treatment of oligometastases with radiotherapy , 2008, Journal of surgical oncology.

[16]  Karl Otto,et al.  Volumetric modulated arc therapy: IMRT in a single gantry arc. , 2007, Medical physics.

[17]  K. Lam,et al.  Metastatic tumours of the adrenal glands: a 30‐year experience in a teaching hospital , 2002, Clinical endocrinology.

[18]  Peter Kneschaurek,et al.  A Planning Comparison of Dynamic IMRT for Different Collimator Leaf Thicknesses with Helical Tomotherapy and RapidArc for Prostate and Head and Neck Tumors , 2010, Strahlentherapie und Onkologie.

[19]  John D Fenwick,et al.  A challenge to traditional radiation oncology. , 2004, International journal of radiation oncology, biology, physics.

[20]  L. Dawson,et al.  Treatment planning study to determine potential benefit of intensity-modulated radiotherapy versus conformal radiotherapy for unresectable hepatic malignancies. , 2008, International journal of radiation oncology, biology, physics.

[21]  F. Lohr,et al.  Clinical Implementation of Volumetric Intensity-Modulated Arc Therapy (VMAT) with ERGO++ , 2010, Strahlentherapie und Onkologie.

[22]  J. Norton,et al.  Tissue effects after stereotactic body radiotherapy using cyberknife for patients with abdominal malignancies. , 2008, Clinical oncology (Royal College of Radiologists (Great Britain)).

[23]  Luca Cozzi,et al.  A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. , 2008, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[24]  M. Schell,et al.  Descriptive analysis of oligometastatic lesions treated with curative-intent stereotactic body radiotherapy. , 2008, International journal of radiation oncology, biology, physics.

[25]  Luca Cozzi,et al.  Intensity modulation with photons for benign intracranial tumours: a planning comparison of volumetric single arc, helical arc and fixed gantry techniques. , 2008, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[26]  M. Burt,et al.  The role of surgery in the treatment of clinically isolated adrenal metastasis , 1998, Cancer.

[27]  M. Nakajo,et al.  Radiotherapy for adrenal gland metastasis from lung cancer: report of three cases. , 1999, Radiation medicine.

[28]  Luca Cozzi,et al.  Volumetric modulated arc radiotherapy for carcinomas of the oro-pharynx, hypo-pharynx and larynx: a treatment planning comparison with fixed field IMRT. , 2009, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[29]  Dong Han Lee,et al.  Image-guided stereotactic body radiation therapy in patients with isolated para-aortic lymph node metastases from uterine cervical and corpus cancer. , 2009 .

[30]  W. Guo,et al.  Radiation therapy for adrenal gland metastases from hepatocellular carcinoma. , 2005, Japanese journal of clinical oncology.

[31]  W. Ulmer Theoretical aspects of energy–range relations, stopping power and energy straggling of protons , 2007 .

[32]  Richard Pötter,et al.  Impact of IMRT and leaf width on stereotactic body radiotherapy of liver and lung lesions. , 2005, International journal of radiation oncology, biology, physics.

[33]  M. Hoogeman,et al.  Curative Stereotactic Robotic Radiotherapy Treatment for Extracranial, Extrapulmonary, Extrahepatic, and Extraspinal Tumors: Technique, Early Results, and Toxicity , 2007, Technology in cancer research & treatment.