OSS (Outer Solar System): a fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt

The present OSS (Outer Solar System) mission continues a long and bright tradition by associating the communities of fundamental physics and planetary sciences in a single mission with ambitious goals in both domains. OSS is an M-class mission to explore the Neptune system almost half a century after the flyby of the Voyager 2 spacecraft. Several discoveries were made by Voyager 2, including the Great Dark Spot (which has now disappeared) and Triton’s geysers. Voyager 2 revealed the dynamics of Neptune’s atmosphere and found four rings and evidence of ring arcs above Neptune. Benefiting from a greatly improved instrumentation, a mission as OSS would result in a striking advance in the study of the farthest planet of the solar system. Furthermore, OSS would provide a unique opportunity to visit a selected Kuiper Belt object subsequent to the passage of the Neptunian system. OSS would help consolidate the hypothesis of the origin of Triton as a Kuiper Belt object captured by Neptune, and to improve our knowledge on the formation of the solar system. The OSS probe would carry instruments allowing precise tracking of the spacecraft during the cruise. It would facilitate the best possible tests of the laws of gravity in deep space. These objectives are important for fundamental physics, as they test General Relativity, our current theoretical description of gravitation, but also for cosmology, astrophysics and planetary science, as General Relativity is used as a tool in all these domains. In particular, the models of solar system formation uses General Relativity to describe the crucial role of gravity. OSS is proposed as an international cooperation between ESA and NASA, giving the capability for ESA to launch an M-class mission towards the farthest planet of the solar system, and to a Kuiper Belt object. The proposed mission profile would allow to deliver a 500 kg class spacecraft. The design of the probe is mainly constrained by the deep space gravity test in order to minimize the perturbation of the accelerometer measurement.

E. Samain | F. Sohl | H. Hussmann | P. Wolf | R. Helled | J. Poncy | P. Touboul | R. Bingham | O. Bertolami | J. Helbert | B. Cecconi | L. Lamy | N. Schmitz | S. Reynaud | S. V. Progrebenko | B. Lenoir | B. Foulon | G. Orton | C. Lämmerzahl | R. Srama | P. Brown | N. André | F. Postberg | R. Srama | C. Lämmerzahl | D. Banfield | G. Orton | S. Asmar | P. Touboul | T. Spilker | O. Bertolami | K. Glassmeier | S. Reynaud | C. Robert | J. Courty | N. Schmitz | K. Stephan | A. Barucci | N. André | H. Hussmann | B. Cecconi | W. Grundy | J. Aurnou | F. Sohl | P. Gil | P. Brown | K. Sayanagi | L. Fletcher | L. Spilker | C. Hansen | R. Helled | L. Lamy | K. Reh | B. Christophe | J. Saur | E. Samain | H. Dittus | B. Foulon | H. Selig | B. Lenoir | B. Lamine | P. Wolf | D. Banfield | B. Christophe | L. J. Spilker | J. D. Anderson | S. W. Asmar | J. Aurnou | A. Barucci | J. -M. Courty | H. Dittus | L. N. Fletcher | F. Francisco | P. J. S. Gil | K. H. Glassmeier | W. Grundy | C. Hansen | B. Lamine | R. Lehoucq | A. Levy | J. Páramos | F. Postberg | S. V. Progrebenko | K. R. Reh | C. Robert | J. Saur | K. M. Sayanagi | H. Selig | T. R. Spilker | K. Stephan | F. Francisco | A. Levy | J. Helbert | R. Bingham | J. Poncy | J. Páramos | R. Lehoucq | Hansjörg Dittus | J. Anderson | John D. Anderson | Serge Reynaud | Pierre Touboul | A. Barucci | Candice Hansen | Jörn Helbert | Glenn S. Orton | L. Lamy | Sami W. Asmar | Nicolas Andr'e | Jonathan Aurnou | Don Banfield | Robert Bingham | Patrick Brown | Leigh N. Fletcher | Paulo Gil | Will Grundy | Jorn Helbert | Claus Lammerzahl | Rolland Lehoucq | Jorge P'aramos | Cl'elia Robert | Etienne Samain | J. Saur | Nicole Schmitz | Katrin Stephan | Peter Wolf

[1]  Jeffrey S. Kargel,et al.  The geology of Triton. , 1995 .

[2]  A. Doressoundiram,et al.  Color Properties and Trends of the Transneptunian Objects , 2008 .

[3]  Our Local Astrophysical Laboratory , 2006, Science.

[4]  Johannes Wicht,et al.  The effects of vigorous mixing in a convective model of zonal flow on the ice giants , 2007 .

[5]  M. L. Kaiser,et al.  The Cassini Radio and Plasma Wave Investigation , 2004 .

[6]  Stuart McMuldroch,et al.  Ralph: A Visible/Infrared Imager for the New Horizons Pluto/Kuiper Belt Mission , 2008 .

[7]  A. Vasavada,et al.  Interaction between eddies and mean flow in Jupiter's atmosphere: Analysis of Cassini imaging data , 2006 .

[8]  M. Kivelson,et al.  The Permanent and Inductive Magnetic Moments of Ganymede , 2002 .

[9]  Tanguy Thibert,et al.  SWAP: Sun watcher using APS detector on-board PROBA-2, a new EUV off-axis telescope on a technology demonstration platform , 2004, SPIE Optics + Photonics.

[10]  Is the physics within the Solar system really understood , 2006, gr-qc/0604052.

[11]  R. West,et al.  Saturn eddy momentum fluxes and convection : First estimates from Cassini images , 2007 .

[12]  C. A. Meetre,et al.  S/WAVES: The Radio and Plasma Wave Investigation on the STEREO Mission , 2008 .

[13]  F. R. Krueger,et al.  Cometary and Interstellar Dust Analyzer for comet Wild 2 , 2003 .

[14]  Fritz M. Neubauer,et al.  Magnetic Fields at Neptune , 1989, Science.

[15]  L. Horn,et al.  Infrared Observations of the Neptunian System , 1989, Science.

[16]  J. Frieman,et al.  Dark Energy and the Accelerating Universe , 2008, 0803.0982.

[17]  M. Abernathy,et al.  Digging into the surface of the icy dwarf planet Eris , 2008, 0811.0825.

[18]  John W. Belcher,et al.  Low‐energy ions near Neptune , 1991 .

[19]  A. Nelson,et al.  TESTS OF THE GRAVITATIONAL INVERSE-SQUARE LAW , 2003, hep-ph/0307284.

[20]  J. P. Dubois,et al.  SPICAV on Venus Express: Three spectrometers to study the global structure and composition of the Venus atmosphere , 2007 .

[21]  A. Doressoundiram,et al.  STRATIFICATION OF METHANE ICE ON ERIS' SURFACE , 2008 .

[22]  P. Brown,et al.  FGM Data Products in the CAA , 2010 .

[23]  J. Moffat,et al.  Gravitational theory, galaxy rotation curves and cosmology without dark matter , 2004, astro-ph/0412195.

[24]  G. E. Wood,et al.  Voyager Radio Science Observations of Neptune and Triton , 1989, Science.

[25]  J. Anderson,et al.  Uranus and Neptune: Shape and rotation , 2010, 1006.3840.

[26]  J. P. Dubois,et al.  The study of the martian atmosphere from top to bottom with SPICAM light on mars express , 2000 .

[27]  E. Grün,et al.  The Galileo Dust Detector , 1992 .

[28]  Marc-Thierry Jaekel,et al.  TESTING THE NEWTON LAW AT LONG DISTANCES , 2005 .

[29]  S. Turyshev,et al.  The Pioneer Anomaly , 2010, Living reviews in relativity.

[30]  W. Hubbard Gravitational Signature of Jupiter's Deep Zonal Flows , 1998 .

[31]  S. Reynaud,et al.  Pioneer 10 Doppler data analysis: Disentangling periodic and secular anomalies , 2008, 0809.2682.

[32]  K. Glassmeier,et al.  RPC-MAG The Fluxgate Magnetometer in the ROSETTA Plasma Consortium , 2007 .

[33]  S. Turyshev,et al.  The Pioneer Anomaly in the Light of New Data , 2009, Space Science Reviews.

[34]  T. Hill,et al.  Origin of Aurora and Airglow on the Night Side of Neptune , 1990 .

[35]  K. Djerroud,et al.  A coherent optical link through the turbulent atmosphere , 2010, EFTF-2010 24th European Frequency and Time Forum.

[36]  S. D. Odintsov,et al.  INTRODUCTION TO MODIFIED GRAVITY AND GRAVITATIONAL ALTERNATIVE FOR DARK ENERGY , 2006, hep-th/0601213.

[37]  A. Fienga,et al.  Gravity tests with INPOP planetary ephemerides , 2009, Proceedings of the International Astronomical Union.

[38]  L. A. Young,et al.  Overview of the New Horizons Science Payload , 2007, Space Science Reviews.

[39]  Drake Deming,et al.  The Phase-Dependent Infrared Brightness of the Extrasolar Planet ʊ Andromedae b , 2006, Science.

[40]  J. Moffat Late-time inhomogeneity and acceleration without dark energy , 2005, astro-ph/0505326.

[41]  J. Brownstein,et al.  Gravitational solution to the Pioneer 10/11 anomaly , 2005, gr-qc/0511026.

[42]  M. Kivelson,et al.  Subsurface Oceans on Europa and Callisto: Constraints from Galileo Magnetometer Observations , 2000 .

[43]  G. Esposito-Farèse,et al.  Field-theoretical formulations of MOND-like gravity , 2007, 0705.4043.

[44]  Independent Confirmation of the Pioneer 10 Anomalous Acceleration , 2002, gr-qc/0208046.

[45]  E. Chiang,et al.  High albedos of low inclination Classical Kuiper belt objects , 2008, 0812.4290.

[46]  Fran Bagenal,et al.  Giant planet magnetospheres , 1992 .

[47]  Harald Hiesinger,et al.  The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo mission , 2010 .

[48]  Luciano Iess,et al.  MORE: an advanced tracking experiment for the exploration of Mercury with the mission BepiColombo , 2006 .

[49]  C. Lämmerzahl,et al.  Exploring the Pioneer Anomaly: Concept Considerations for a Deep-Space Gravity Probe Based on Laser-Controlled Free-Flying Reference Masses , 2008 .

[50]  Luciano Iess,et al.  Spacecraft Doppler tracking: Noise budget and accuracy achievable in precision radio science observations , 2005 .

[51]  S. Reynaud,et al.  Post-Einsteinian tests of linearized gravitation , 2005, gr-qc/0502007.

[52]  Michael E. Brown,et al.  Neptune Ring Science with Argo - A Voyage through the Outer Solar System , 2009 .

[53]  S. Reynaud,et al.  Unbiased acceleration measurements with an electrostatic accelerometer on a rotating platform , 2011, 1105.4979.

[54]  Marc-Thierry Jaekel,et al.  Radar ranging and Doppler tracking in post-Einsteinian metric theories of gravity , 2006 .

[55]  P. Tortora,et al.  A test of general relativity using radio links with the Cassini spacecraft , 2003, Nature.

[56]  J. Moffat Scalar–tensor–vector gravity theory , 2005, gr-qc/0506021.

[57]  Robert A. Jacobson,et al.  THE ORBITS OF THE NEPTUNIAN SATELLITES AND THE ORIENTATION OF THE POLE OF NEPTUNE , 2008 .

[58]  M. M. Colavita,et al.  Atmospheric Turbulence Measurements with the Palomar Testbed Interferometer , 2001, astro-ph/0102052.

[59]  Christian Veillet,et al.  T2L2 Time Transfer by Laser Link , 1995 .

[60]  P. Touboul,et al.  Accelerometers for CHAMP, GRACE and GOCE space missions: synergy and evolution , 1999 .

[61]  Luciano Iess,et al.  Cassini Radio Science , 2004 .

[62]  J.D. Prestage,et al.  Compact Microwave Mercury Ion Clock for Deep-Space Applications , 2007, 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum.

[63]  O. Bertolami,et al.  The Pioneer anomaly in the context of the braneworld scenario , 2003, gr-qc/0310101.

[64]  Ralf Srama,et al.  The dust sensor for CASSINI , 1997 .

[65]  Steven R. Oleson,et al.  Enabling Decadal Survey Science Goals for Primitive Bodies Using Radioisotope Electric Propulsion , 2006 .

[66]  C. Boehmer,et al.  Extra force in f(R) modified theories of gravity , 2007, 0704.1733.

[67]  Jean-Luc Margot,et al.  Binaries in the Kuiper Belt , 2007, astro-ph/0703134.

[68]  R. H. Brown,et al.  Triton's Geyser-Like Plumes: Discovery and Basic Characterization , 1990, Science.

[69]  N. F. Ness,et al.  Reply to a paper on the use of two magnetometers for magnetic field measurements on a spacecraft , 1971 .

[70]  P. Thomas The Shape of Triton from Limb Profiles , 2000 .

[71]  W. Hubbard,et al.  Interior Structure of Neptune: Comparison with Uranus , 1991, Science.

[72]  H. Boehnhardt,et al.  The Solar System Beyond Neptune: Overview and Perspectives , 2008 .

[73]  S. Reynaud,et al.  Electrostatic accelerometer with bias rejection for Gravitation and Solar System physics , 2010, 1011.6263.

[74]  R. Kudritzki,et al.  THE DISTANCE TO THE MASSIVE ECLIPSING BINARY LMC-SC1-105 IN THE LARGE MAGELLANIC CLOUD , 2011, 1101.1953.

[75]  A. Mohammadzadeh,et al.  Low temperature alpha particle irradiation of a STAR1000 CMOS APS , 2007, 2007 9th European Conference on Radiation and Its Effects on Components and Systems.

[76]  Jeffrey G. Schreiber,et al.  Development of Advanced Stirling Radioisotope Generator for Space Exploration , 2007 .

[77]  D. Banfield,et al.  Neptune Science with Argo – A Voyage through the Outer Solar System , 2009 .

[78]  Vincent Michau,et al.  Shack-Hartmann wavefront sensor using IR extended source , 2007, SPIE Remote Sensing.

[79]  S. Theil,et al.  A MISSION TO EXPLORE THE PIONEER ANOMALY , 2005, gr-qc/0506139.

[80]  C. Lämmerzahl,et al.  High precision thermal modeling of complex systems with application to the flyby and Pioneer anomaly , 2011, 1104.3985.

[81]  B. Sicardy,et al.  The Dynamics of the Neptunian Adams Ring's Arcs , 1996 .

[82]  C. Porco An Explanation for Neptune's Ring Arcs , 1991, Science.

[83]  H. Hammel,et al.  Seeing double at Neptune's south pole , 2010, 1003.3240.

[84]  R. Kirk,et al.  Subsurface Energy Storage and Transport for Solar-Powered Geysers on Triton , 1990, Science.

[85]  Christopher T. Russell,et al.  Accurate determination of magnetic field gradients from four point vector measurements. I. Use of natural constraints on vector data obtained from a single spinning spacecraft , 1996 .

[86]  Christopher T. Russell,et al.  An advanced approach to finding magnetometer zero levels in the interplanetary magnetic field , 2008 .

[87]  G. L. Tyler,et al.  The New Horizons Radio Science Experiment (REX) , 2008 .

[88]  David Jewitt,et al.  The Solar System Beyond Neptune , 1995 .

[89]  Yanping Guo,et al.  New Horizons Mission Design , 2008 .

[90]  Fritz M. Neubauer,et al.  Induced Magnetic Fields in Solar System Bodies , 2010 .

[91]  J. Laskar,et al.  Quantum physics exploring gravity in the outer solar system: the SAGAS project , 2007, 0711.0304.

[92]  Renu Malhotra,et al.  The origin of Pluto's peculiar orbit , 1995, Nature.

[93]  S. Stanley,et al.  Convective-region geometry as the cause of Uranus' and Neptune's unusual magnetic fields , 2004, Nature.

[94]  Slava G. Turyshev,et al.  Indication, from Pioneer 10 / 11, Galileo, and Ulysses data, of an apparent anomalous, weak, long range acceleration , 1998 .

[95]  Modelling the reflective thermal contribution to the acceleration of the Pioneer spacecraft , 2011, 1103.5222.

[96]  K. Matthews,et al.  Stellar Occultation Observations of Neptune's Rings: 1984-1988 , 1995 .

[97]  TOPICAL REVIEW: Astrophysical constraints on modifying gravity at large distances , 2001, hep-ph/0105083.

[98]  C. Sotin,et al.  The fluxgate magnetometer of the BepiColombo Mercury Planetary Orbiter , 2010 .

[99]  K. Sayanagi,et al.  The Emergence of Multiple Robust Zonal Jets from Freely Evolving, Three-Dimensional Stratified Geostrophic Turbulence with Applications to Jupiter , 2008 .

[100]  Shinji Tsujikawa,et al.  Dynamics of dark energy , 2006 .

[101]  W. Grundy,et al.  Near-infrared spectral monitoring of Triton with IRTF/SpeX II: Spatial distribution and evolution of ices , 2009, 0908.2623.

[102]  J. Delporte,et al.  HORACE: A compact cold atom clock for Galileo , 2011 .

[103]  C. Veillet,et al.  T2L2 - Time transfer by Laser link: a new optical time transfer generation , 1997 .

[104]  Clifford M. Will,et al.  The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.

[105]  T. Gudkova,et al.  Models, figures and gravitational moments of Jupiter's satellite Io: Effects of the second order approximation , 2010 .

[106]  Gregor E. Morfill,et al.  The Ulysses dust experiment , 1992 .

[107]  M. W. Evans,et al.  The determination of the structure of Saturn’s F ring by nearby moonlets , 2008, Nature.

[108]  S. Hensley,et al.  Titan's Rotation Reveals an Internal Ocean and Changing Zonal Winds , 2008, Science.

[109]  John Earman,et al.  Einstein's Explanation of the Motion of Mercury's Perihelion , 1993 .

[110]  T. Spohn,et al.  Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects , 2006 .

[111]  Jordan Ellis,et al.  Support for the thermal origin of the pioneer anomaly. , 2012, Physical review letters.

[112]  S. Tremaine,et al.  Towards a theory for Neptune's arc rings , 1986 .

[113]  G. Schubert,et al.  Interior composition, structure and dynamics of the Galilean satellites , 2004 .

[114]  S. Limaye,et al.  Winds of Neptune - Voyager observations of cloud motions , 1991 .

[115]  E. Samain,et al.  Odyssey: a solar system mission , 2007, 0711.2007.

[116]  Andre Balogh,et al.  Planetary Magnetic Field Measurements: Missions and Instrumentation , 2010 .

[117]  Bryan J. Travis,et al.  Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating , 2007 .

[118]  Hans-Ulrich Auster,et al.  Modified gradiometer technique applied to Double Star (TC-1) , 2008 .

[119]  M. Marley,et al.  Comparative models of Uranus and Neptune , 1995 .

[120]  J. Emery,et al.  Composition and Surface Properties of Transneptunian Objects and Centaurs , 2008 .

[121]  Werner Magnes,et al.  The Double Star magnetic field investigation: instrument design, performance and highlights of the first year's observations , 2005 .

[122]  S. Reynaud,et al.  Unbiased acceleration measurements with an electrostatic accelerometer , 2011 .

[123]  Harold F. Levison,et al.  Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune , 2007, 0712.0553.

[124]  The constancy of the Pioneer anomalous acceleration , 2007 .

[125]  Slava G. Turyshev,et al.  Study of the anomalous acceleration of Pioneer 10 and 11 , 2001, gr-qc/0104064.

[126]  Runaway dilaton and equivalence principle violations. , 2002, Physical review letters.

[127]  Werner Magnes,et al.  The THEMIS Fluxgate Magnetometer , 2008 .

[128]  M. Nieto,et al.  Astrometric solar-system anomalies , 2009, Proceedings of the International Astronomical Union.

[129]  L. Jones,et al.  The Orbital and Spatial Distribution of the Kuiper Belt , 2008 .

[130]  Mario H. Acuna,et al.  The magnetic field of Neptune , 1992 .

[131]  S. Dermott Shapes and gravitational moments of satellites and asteroids , 1979 .

[132]  T. Guillot,et al.  SELF-CONSISTENT MODEL ATMOSPHERES AND THE COOLING OF THE SOLAR SYSTEM'S GIANT PLANETS , 2011, 1101.0606.

[133]  J. Anderson,et al.  Possible flyby measurements of Galilean satellite interior structure , 1978 .

[134]  E. Igenbergs,et al.  The Cassini Cosmic Dust Analyzer , 2004 .

[135]  Sergey Vyazovkin,et al.  Thermal analysis. , 2006, Analytical chemistry.

[136]  Mario H. Acuna,et al.  Space-based magnetometers , 2002 .

[137]  N. Ness Intrinsic magnetic fields of the planets: Mercury to Neptune , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[138]  S. Reynaud,et al.  Post-Einsteinian tests of gravitation , 2005, gr-qc/0510068.

[139]  S. K. Croft,et al.  Voyager 2 at Neptune: Imaging Science Results , 1989, Science.

[140]  Donald A. Gurnett,et al.  Micron‐sized particles detected near Neptune by the Voyager 2 plasma wave instrument , 1991 .

[141]  A. Freise,et al.  Interferometer Techniques for Gravitational-Wave Detection , 2009, Living reviews in relativity.