Nonsmooth Schur–Newton methods for multicomponent Cahn–Hilliard systems
暂无分享,去创建一个
[1] Charles M. Elliott,et al. `A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy' , 1991 .
[2] I. Steinbach,et al. A phase field concept for multiphase systems , 1996 .
[3] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[4] Junseok Kim,et al. A numerical method for the ternary Cahn--Hilliard system with a degenerate mobility , 2009 .
[5] John W. Barrett,et al. An optimal error bound for a finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy , 1999 .
[6] John W. Barrett,et al. An Error Bound for the Finite Element Approximation of a Model for Phase Separation of a Multi-Compo , 1996 .
[7] Robert Nürnberg,et al. The degenerate and non-degenerate deep quench obstacle problem: A numerical comparison , 2013, Networks Heterog. Media.
[8] Harald Garcke,et al. Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method , 2011 .
[9] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[10] Carsten Gräser. Globalization of Nonsmooth Newton Methods for Optimal Control Problems , 2008 .
[11] Moulay Hicham Tber,et al. An adaptive finite-element Moreau–Yosida-based solver for a non-smooth Cahn–Hilliard problem , 2011, Optim. Methods Softw..
[12] Ralf Kornhuber,et al. Time discretizations of anisotropic Allen–Cahn equations , 2013 .
[13] D. de Fontaine,et al. An analysis of clustering and ordering in multicomponent solid solutions—I. Stability criteria , 1972 .
[14] Ralf Kornhuber,et al. Nonsmooth Newton Methods for Set-Valued Saddle Point Problems , 2009, SIAM J. Numer. Anal..
[15] Ralf Kornhuber,et al. Multigrid Methods for Obstacle Problems , 2008 .
[16] Ralf Kornhuber,et al. On constrained Newton linearization and multigrid for variational inequalities , 2002, Numerische Mathematik.
[17] Harald Garcke,et al. A multi-phase Mullins–Sekerka system: matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[18] Charles M. Elliott,et al. Numerical analysis of a model for phase separation of a multi- component alloy , 1996 .
[19] Charles M. Elliott,et al. The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis , 1991, European Journal of Applied Mathematics.
[20] P. Lions,et al. Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .
[21] Ralf Kornhuber,et al. On multigrid methods for vector-valued Allen-Cahn equations , 2003 .
[22] Maya Neytcheva,et al. Efficient numerical solution of discrete multi-component Cahn-Hilliard systems , 2014, Comput. Math. Appl..
[23] John W. Barrett,et al. An Improved Error Bound for a Finite Element Approximation of a Model for Phase Separation of a Mult , 1999 .
[24] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[25] John W. Cahn,et al. Spinodal decomposition in ternary systems , 1971 .
[26] Michael Hinze,et al. A Globalized Semi-smooth Newton Method for Variational Discretization of Control Constrained Elliptic Optimal Control Problems , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.
[27] Carsten Gräser,et al. Convex minimization and phase field models , 2011 .
[28] Harald Garcke,et al. Nonlocal Allen–Cahn systems: analysis and a primal–dual active set method , 2013 .
[29] John W. Barrett,et al. An improved error bound for a finite element approximation of a model for phase separation of a multi-component alloy with a concentration dependent mobility matrix , 2001, Numerische Mathematik.
[30] John W. Barrett,et al. Finite Element Approximation of a Phase Field Model for Void Electromigration , 2004, SIAM J. Numer. Anal..
[31] Oliver Sander,et al. The dune-subgrid module and some applications , 2009, Computing.
[32] Ralf Kornhuber,et al. Robust Multigrid Methods for Vector-valued Allen–Cahn Equations with Logarithmic Free Energy , 2006 .
[33] Oliver Sander,et al. Truncated Nonsmooth Newton Multigrid Methods for Convex Minimization Problems , 2009 .
[34] Gene H. Golub,et al. A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..