Cell cycle arrest and p53 prevent ON-target megabase-scale rearrangements induced by CRISPR-Cas9

[1]  A. Madi,et al.  Frequent Aneuploidy in Primary Human T Cells after CRISPR-Cas9 cleavage , 2022, Nature biotechnology.

[2]  K. Rajewsky,et al.  Precise CRISPR-Cas–mediated gene repair with minimal off-target and unintended on-target mutations in human hematopoietic stem cells , 2022, Science advances.

[3]  D. Cappellen,et al.  ON-target Adverse Events of CRISPR-Cas9 Nuclease: More Chaotic than Expected. , 2022, The CRISPR journal.

[4]  R. Jaenisch,et al.  Whole chromosome loss and genomic instability in mouse embryos after CRISPR-Cas9 genome editing , 2021, Nature Communications.

[5]  D. Cappellen,et al.  CRISPR-Cas9 globin editing can induce megabase-scale copy-neutral losses of heterozygosity in hematopoietic cells , 2021, Nature Communications.

[6]  N. Maizels,et al.  POLQ suppresses interhomolog recombination and loss of heterozygosity at targeted DNA breaks , 2020, Proceedings of the National Academy of Sciences.

[7]  A. Bradley,et al.  Cas9-induced large deletions and small indels are controlled in a convergent fashion , 2020, bioRxiv.

[8]  Cheng-Zhong Zhang,et al.  Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing , 2020, Nature Genetics.

[9]  David R. Liu,et al.  Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors , 2020, Nature Biotechnology.

[10]  K. Niakan,et al.  Frequent loss of heterozygosity in CRISPR-Cas9–edited early human embryos , 2020, Proceedings of the National Academy of Sciences.

[11]  M. Dichgans,et al.  Detection of Deleterious On-Target Effects after HDR-Mediated CRISPR Editing. , 2020, Cell reports.

[12]  A. Levine p53: 800 million years of evolution and 40 years of discovery , 2020, Nature Reviews Cancer.

[13]  Oana M. Enache,et al.  Cas9 activates the p53 pathway and selects for p53-inactivating mutations , 2020, Nature Genetics.

[14]  Ian Tomlinson,et al.  CRISPR-Cas9 Causes Chromosomal Instability and Rearrangements in Cancer Cell Lines, Detectable by Cytogenetic Methods , 2019, The CRISPR journal.

[15]  M. Behlke,et al.  Evaluation and Reduction of CRISPR Off-Target Cleavage Events , 2019, Nucleic acid therapeutics.

[16]  Ivan Merelli,et al.  Precise Gene Editing Preserves Hematopoietic Stem Cell Function following Transient p53-Mediated DNA Damage Response , 2019, Cell stem cell.

[17]  G. Cullot,et al.  CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations , 2019, Nature Communications.

[18]  A. Rezza,et al.  Unexpected genomic rearrangements at targeted loci associated with CRISPR/Cas9-mediated knock-in , 2019, Scientific Reports.

[19]  H. Nakauchi,et al.  Efficient scarless genome editing in human pluripotent stem cells , 2018, Nature Methods.

[20]  David R. Liu,et al.  Base editing: precision chemistry on the genome and transcriptome of living cells , 2018, Nature Reviews Genetics.

[21]  C. Don,et al.  Erratum: Human embryonic stem cell–derived cardiomyocytes restore function in infarcted hearts of non-human primates , 2018, Nature Biotechnology.

[22]  James N. Hughes,et al.  Large deletions induced by Cas9 cleavage , 2018, Nature.

[23]  A. Malkova,et al.  Break-Induced Replication: The Where, The Why, and The How. , 2018, Trends in genetics : TIG.

[24]  Gregory McAllister,et al.  p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells , 2018, Nature Medicine.

[25]  J. Taipale,et al.  CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response , 2018, Nature Medicine.

[26]  A. Holland,et al.  The impact of mitotic errors on cell proliferation and tumorigenesis , 2018, Genes & development.

[27]  Yixue Li,et al.  CRISPR/Cas9-mediated targeted chromosome elimination , 2017, Genome Biology.

[28]  Lothar Hennighausen,et al.  CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome , 2017, Nature Communications.

[29]  James E Haber,et al.  The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. , 2016, DNA repair.

[30]  Marcus Schmidt Palbociclib - from Bench to Bedside and Beyond , 2016, Breast Care.

[31]  Peter J. Campbell,et al.  Chromothripsis and Kataegis Induced by Telomere Crisis , 2015, Cell.

[32]  Hisashi Tanaka,et al.  Replication fork integrity and intra-S phase checkpoint suppress gene amplification , 2015, Nucleic acids research.

[33]  J. Doudna,et al.  The new frontier of genome engineering with CRISPR-Cas9 , 2014, Science.

[34]  L. Shaffer,et al.  Large Inverted Duplications in the Human Genome Form via a Fold-Back Mechanism , 2014, PLoS genetics.

[35]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[36]  J. Murnane,et al.  Telomere dysfunction and chromosome instability. , 2012, Mutation research.

[37]  S. Warren,et al.  Replication stress induces genome-wide copy number changes in human cells that resemble polymorphic and pathogenic variants. , 2009, American journal of human genetics.

[38]  Jiri Bartek,et al.  An Oncogene-Induced DNA Damage Model for Cancer Development , 2008, Science.

[39]  Karen H. Vousden,et al.  p53 in health and disease , 2007, Nature Reviews Molecular Cell Biology.

[40]  Hongmao Sun,et al.  Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Yong Liao,et al.  HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation , 2001, Nature Cell Biology.

[42]  M. Hung,et al.  Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells , 2001, Nature Cell Biology.

[43]  P. Rouet,et al.  Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[44]  V. Rotter,et al.  p53-dependent cell cycle control: response to genotoxic stress. , 1998, Seminars in cancer biology.