A 20,000 M☉ Black Hole in the Stellar Cluster G1

We present the detection of a 2.0 × 104 M☉ black hole (BH) in the stellar cluster G1 (Mayall II), based on data taken with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. G1 is one of the most massive stellar clusters in M31. The central velocity dispersion (25 km s-1) and the measured BH mass of G1 place it on a linear extrapolation of the correlation between BH mass and bulge velocity dispersion established for nearby galaxies. The detection of a BH in this low-mass stellar system suggests that (1) the most likely candidates for seed massive BHs come from stellar clusters, (2) there is a direct link between massive stellar clusters and normal galaxies, and (3) the formation process of both bulges and massive clusters is similar because of their concordance in the M•-σ relation. Globular clusters in our Galaxy should be searched for central BHs.

[1]  Puragra Guhathakurta,et al.  Hubble Space Telescope Evidence for an Intermediate-Mass Black Hole in the Globular Cluster M15. I. STIS Spectroscopy and WFPC2 Photometry , 2002, astro-ph/0209314.

[2]  Annette Ferguson,et al.  Evidence for Stellar Substructure in the Halo and Outer Disk of M31 , 2002, astro-ph/0205530.

[3]  M. Tremaine A time to say goodbye , 2002 .

[4]  M. Geha,et al.  Keck Spectroscopy of Dwarf Elliptical Galaxies in the Virgo Cluster , 2001, astro-ph/0107010.

[5]  M. Miller,et al.  Production of intermediate-mass black holes in globular clusters , 2001, astro-ph/0106188.

[6]  T. Lauer,et al.  M33: A Galaxy with No Supermassive Black Hole , 2001, astro-ph/0107135.

[7]  S. G. Djorgovski,et al.  Mayall II = G1 in M31: Giant Globular Cluster or Core of a Dwarf Elliptical Galaxy? , 2001, astro-ph/0105013.

[8]  F. Adams,et al.  A Theoretical Model for the Mbh-σ Relation for Supermassive Black Holes in Galaxies , 2000, astro-ph/0010549.

[9]  G. Kauffmann,et al.  The Correlation between black hole mass and bulge velocity dispersion in hierarchical galaxy formation models , 2000, astro-ph/0007369.

[10]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[11]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[12]  J. Ostriker,et al.  Collisional dark matter and the origin of massive black holes , 1999, Physical review letters.

[13]  K. Gebhardt,et al.  Canada-France-Hawaii Telescope Adaptive Optics Observations of the Central Kinematics in M15 , 1999, astro-ph/9912172.

[14]  S. Tremaine,et al.  Axisymmetric, Three-Integral Models of Galaxies: A Massive Black Hole in NGC 3379 , 1999, astro-ph/9912026.

[15]  T. Lauer,et al.  M32 ± 1 , 1998, astro-ph/9806277.

[16]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[17]  R. Bender,et al.  Global Relationships Among the Physical Properties of Stellar Systems , 1997, astro-ph/9707037.

[18]  Haldan N. Cohn,et al.  The Dynamics of M15: Observations of the Velocity Dispersion Profile and Fokker-Planck Models , 1997 .

[19]  S. Djorgovski,et al.  Dynamical Correlations for Globular Clusters in M31, , 1997 .

[20]  S. Tremaine,et al.  The Centers of Early-Type Galaxies with HST III: Non-Parametric Recovery of Stellar Luminosity Distributions , 1996, astro-ph/9604092.

[21]  Wendy L. Freedman,et al.  Local Group Populations With the Hubble Space Telescope. I. The M31 Globular Cluster G1=Mayall II , 1996 .

[22]  Scott Trager,et al.  Catalogue of Galactic globular-cluster surface-brightness profiles , 1995 .

[23]  Summary: Achievements and Open Questions , 1993 .

[24]  Robert W. O'Connell,et al.  Star formation in the semistellar nucleus of M33 , 1983 .