Wikipedia-based Semantic Approach for Tweet Contextualization

The tweet contextualization task aims at providing an automatic readable summary explaining a given tweet. As tweets are very short documents, bound to 140 characters, and not always written maintaining proper spellings, there is indeed a need for such a task. This article describes a semantic tweet expansion approach for the tweet con-textualization task based on Wikipedia as an external knowledge source. This approach consists in two major phases, namely: the first is the generation of the candidate terms, from Wikipedia. While the second is the selection of the most-related terms. To achieve this latter, we propose a semantic relatedness measure based on the Explicit Semantic Analysis and association rules mining. The e↵ectiveness of our approach is proved through an experimental study conducted on the INEX 2014 collection. Our results have outperformed of the runs issued from INEX 2014.

[1]  Ali Jaoua,et al.  Query expansion using fuzzy association rules between terms , 2003 .

[2]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[3]  Mohamed Morchid,et al.  Combinaison de thèmes latents pour la contextualisation de Tweets , 2013 .

[4]  Ian H. Witten,et al.  An open-source toolkit for mining Wikipedia , 2013, Artif. Intell..

[5]  Florian Boudin,et al.  Contextualisation automatique de Tweets à partir de Wikipédia , 2013, CORIA.

[6]  Andréa Carneiro Linhares An Automatic Greedy Summarization System at INEX 2013 Tweet Contextualization Track , 2013, CLEF.

[7]  Philippe Mulhem,et al.  Multimedia Information Modeling and Retrieval (MRIM) /Laboratoire d'Informatique de Grenoble (LIG) at CHiC2013 , 2013, CLEF.

[8]  Jens Lehmann,et al.  Keyword Query Expansion on Linked Data Using Linguistic and Semantic Features , 2013, 2013 IEEE Seventh International Conference on Semantic Computing.

[9]  Cherif Chiraz Latiri,et al.  INEX2014: Tweet Contextualization Using Association Rules between Terms , 2014, CLEF.

[10]  Juan-Manuel Torres-Moreno Three Statistical Summarizers at CLEF-INEX 2013 Tweet Contextualization Track , 2014, CLEF.

[11]  Min Song,et al.  Integration of association rules and ontologies for semantic query expansion , 2007, Data Knowl. Eng..

[12]  Lamjed Ben Jabeur Leveraging social relevance : using social networks to enhance literature access and microblog search , 2013 .

[13]  Josiane Mothe,et al.  IRIT at INEX 2012: Tweet Contextualization , 2012, CLEF.

[14]  Patrice Bellot,et al.  Overview of INEX Tweet Contextualization 2014 track , 2014, CLEF.

[15]  Prasenjit Majumder,et al.  Query Expansion for Microblog Retrieval , 2011, TREC.

[16]  Yuefeng Li,et al.  Microblog Retrieval Using Topical Features and Query Expansion , 2011, TREC.

[17]  Evgeniy Gabrilovich,et al.  Wikipedia-based Semantic Interpretation for Natural Language Processing , 2014, J. Artif. Intell. Res..

[18]  Evgeniy Gabrilovich,et al.  Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis , 2007, IJCAI.

[19]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .