Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex

Soma location, dendrite morphology, and synaptic innervation may represent key determinants of functional responses of individual neurons, such as sensory-evoked spiking. Here, we reconstruct the 3D circuits formed by thalamocortical afferents from the lemniscal pathway and excitatory neurons of an anatomically defined cortical column in rat vibrissal cortex. We objectively classify 9 cortical cell types and estimate the number and distribution of their somata, dendrites, and thalamocortical synapses. Somata and dendrites of most cell types intermingle, while thalamocortical connectivity depends strongly upon the cell type and the 3D soma location of the postsynaptic neuron. Correlating dendrite morphology and thalamocortical connectivity to functional responses revealed that the lemniscal afferents can account for some of the cell type- and location-specific subthreshold and spiking responses after passive whisker touch (e.g., in layer 4, but not for other cell types, e.g., in layer 5). Our data provides a quantitative 3D prediction of the cell type–specific lemniscal synaptic wiring diagram and elucidates structure–function relationships of this physiologically relevant pathway at single-cell resolution.

[1]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[2]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[3]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. , 1970, Brain research.

[4]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex , 1970 .

[5]  C. Welker Receptive fields of barrels in the somatosensory neocortex of the rat , 1976, The Journal of comparative neurology.

[6]  S. Wise,et al.  Cells of origin and terminal distribution of descending projections of the rat somatic sensory cortex , 1977, The Journal of comparative neurology.

[7]  E. White Thalamocortical synaptic relations: A review with emphasis on the projections of specific thalamic nuclei to the primary sensory areas of the neocortex , 1979, Brain Research Reviews.

[8]  A. Peters Thalamic input to the cerebral cortex , 1979, Trends in Neurosciences.

[9]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[10]  R. Masterton,et al.  The sensory contribution of a single vibrissa's cortical barrel. , 1986, Journal of neurophysiology.

[11]  E. G. Jones Cerebral Cortex , 1987, Cerebral Cortex.

[12]  K. Horikawa,et al.  A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates , 1988, Journal of Neuroscience Methods.

[13]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. I. Establishment of cell classes , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  S. Buffer,et al.  Barreloids in adult rat thalamus: Three‐dimensional architecture and relationship to somatosensory cortical barrels , 1995, The Journal of comparative neurology.

[16]  D. Pinault,et al.  A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin , 1996, Journal of Neuroscience Methods.

[17]  M. Deschenes,et al.  Intracortical Axonal Projections of Lamina VI Cells of the Primary Somatosensory Cortex in the Rat: A Single-Cell Labeling Study , 1997, The Journal of Neuroscience.

[18]  Martin Deschênes,et al.  The organization of corticothalamic projections: reciprocity versus parity , 1998, Brain Research Reviews.

[19]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[20]  M. Deschenes,et al.  Parallel Streams for the Relay of Vibrissal Information through Thalamic Barreloids , 2000, The Journal of Neuroscience.

[21]  B. Sakmann,et al.  In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain , 2002, Pflügers Archiv.

[22]  Bert Sakmann,et al.  Whisker maps of neuronal subclasses of the rat ventral posterior medial thalamus, identified by whole‐cell voltage recording and morphological reconstruction , 2002, The Journal of physiology.

[23]  A. Burkhalter,et al.  Axo‐axonic synapses formed by somatostatin‐expressing GABAergic neurons in rat and monkey visual cortex , 2002, The Journal of comparative neurology.

[24]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[25]  B. Sakmann,et al.  ‐Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex , 2002, The Journal of physiology.

[26]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[27]  J. Lübke,et al.  Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. , 2003, Cerebral cortex.

[28]  Bert Sakmann,et al.  Sub‐ and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex , 2004, The Journal of physiology.

[29]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[30]  Karl Zilles,et al.  Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. , 2004, Cerebral cortex.

[31]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[32]  P. Land,et al.  Subbarrel domains in rat somatosensory (S1) cortex , 2005, The Journal of comparative neurology.

[33]  Charles Hansen,et al.  The Visualization Handbook , 2011 .

[34]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[35]  K. Svoboda,et al.  Cell Type-Specific Structural Plasticity of Axonal Branches and Boutons in the Adult Neocortex , 2006, Neuron.

[36]  E. Ahissar,et al.  Parallel Thalamic Pathways for Whisking and Touch Signals in the Rat , 2006, PLoS biology.

[37]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[38]  David S. Greenberg,et al.  Spatial Organization of Neuronal Population Responses in Layer 2/3 of Rat Barrel Cortex , 2007, The Journal of Neuroscience.

[39]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[40]  Randy M Bruno,et al.  Transmitted light brightfield mosaic microscopy for three-dimensional tracing of single neuron morphology. , 2007, Journal of biomedical optics.

[41]  S. Nelson,et al.  Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. , 2007, Journal of neurophysiology.

[42]  J. Lübke,et al.  Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex , 2007, Brain Structure and Function.

[43]  Ian R. Wickersham,et al.  Retrograde neuronal tracing with a deletion-mutant rabies virus , 2007, Nature Methods.

[44]  Cpj de Kock,et al.  Layer‐ and cell‐type‐specific suprathreshold stimulus representation in rat primary somatosensory cortex , 2007, The Journal of physiology.

[45]  Cpj de Kock,et al.  Reconstruction of an average cortical column in silico , 2007, Brain Research Reviews.

[46]  Bert Sakmann,et al.  Sensory integration across space and in time for decision making in the somatosensory system of rodents , 2007, Proceedings of the National Academy of Sciences.

[47]  D. Simons,et al.  Motor modulation of afferent somatosensory circuits , 2008, Nature Neuroscience.

[48]  Randy M Bruno,et al.  Subcolumnar dendritic and axonal organization of spiny stellate and star pyramid neurons within a barrel in rat somatosensory cortex. , 2008, Cerebral cortex.

[49]  O. Ohana,et al.  Inter- and intralaminar subcircuits of excitatory and inhibitory neurons in layer 6a of the rat barrel cortex. , 2008, Journal of neurophysiology.

[50]  Henry Markram,et al.  Identifying, tabulating, and analyzing contacts between branched neuron morphologies , 2008, IBM J. Res. Dev..

[51]  J. Brumberg,et al.  Morphological heterogeneity of layer VI neurons in mouse barrel cortex , 2009, The Journal of comparative neurology.

[52]  M Oberlaender,et al.  Shack‐Hartmann wave front measurements in cortical tissue for deconvolution of large three‐dimensional mosaic transmitted light brightfield micrographs , 2009, Journal of microscopy.

[53]  B. Sakmann,et al.  Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific , 2009, Proceedings of the National Academy of Sciences.

[54]  B. Sakmann,et al.  Journal of Neuroscience Methods Automated Three-dimensional Detection and Counting of Neuron Somata , 2022 .

[55]  M. Deschenes,et al.  Septal neurons in barrel cortex derive their receptive field input from the lemniscal pathway , 2009, Neuroscience Research.

[56]  Hans-Christian Hege,et al.  Automatic alignment of stacks of filament data , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[57]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[58]  H. S. Meyer,et al.  Cell-Type Specific Properties of Pyramidal Neurons in Neocortex Underlying a Layout that Is Modifiable Depending on the , 2009 .

[59]  K. Svoboda,et al.  Neural Activity in Barrel Cortex Underlying Vibrissa-Based Object Localization in Mice , 2010, Neuron.

[60]  K. Harris,et al.  Ultrastructural Analysis of Hippocampal Neuropil from the Connectomics Perspective , 2010, Neuron.

[61]  H. S. Meyer,et al.  Cell Type–Specific Thalamic Innervation in a Column of Rat Vibrissal Cortex , 2010, Cerebral cortex.

[62]  B. Sakmann,et al.  Dimensions of a Projection Column and Architecture of VPM and POm Axons in Rat Vibrissal Cortex , 2010, Cerebral cortex.

[63]  H. S. Meyer,et al.  Number and Laminar Distribution of Neurons in a Thalamocortical Projection Column of Rat Vibrissal Cortex , 2010, Cerebral cortex.

[64]  Hanno S Meyer,et al.  Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. , 2010, Cerebral cortex.

[65]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[66]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[67]  Stefan Lang,et al.  Simulation of signal flow in 3D reconstructions of an anatomically realistic neural network in rat vibrissal cortex , 2011, Neural Networks.

[68]  Nuno Maçarico da Costa,et al.  How Thalamus Connects to Spiny Stellate Cells in the Cat's Visual Cortex , 2011, The Journal of Neuroscience.

[69]  Marcel Oberlaender,et al.  Semi-automated three-dimensional reconstructions of individual neurons reveal cell type-specific circuits in cortex , 2011, Communicative & integrative biology.

[70]  Randy M. Bruno,et al.  Effects and Mechanisms of Wakefulness on Local Cortical Networks , 2011, Neuron.

[71]  H. Markram,et al.  Morphological Development of Thick-Tufted Layer V Pyramidal Cells in the Rat Somatosensory Cortex , 2011, Front. Neuroanat..

[72]  Takahiro Furuta,et al.  Anisotropic Distribution of Thalamocortical Boutons in Barrels , 2011, The Journal of Neuroscience.

[73]  B. Sakmann,et al.  Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch , 2011, Proceedings of the National Academy of Sciences.

[74]  Arno C. Schmitt,et al.  Inhibitory interneurons in a cortical column form hot zones of inhibition in layers 2 and 5A , 2011, Proceedings of the National Academy of Sciences.

[75]  Marcel Oberlaender,et al.  Sensory Experience Restructures Thalamocortical Axons during Adulthood , 2012, Neuron.

[76]  Hans-Christian Hege,et al.  Interactive Visualization – a Key Prerequisite for Reconstruction of Anatomically Realistic Neural Networks , 2012 .

[77]  Hans-Christian Hege,et al.  Interactive Visualization-A Key Prerequisite for Reconstruction and Analysis of Anatomically Realistic Neural Networks , 2012, Visualization in Medicine and Life Sciences II.