On the complexity of minimizing probabilistic and quantum automata

Several types of automata, such as probabilistic and quantum automata, require to work with real and complex numbers. For such automata the acceptance of an input is quantified with a probability. There are plenty of results in the literature addressing the complexity of checking the equivalence of these automata, that is, checking whether two automata accept all inputs with the same probability. On the other hand, the critical problem of finding the minimal automata equivalent to a given one has been left open [C. Moore, J.P. Crutchfield, Quantum automata and quantum grammars, Theoret. Comput. Sci. 237 (2000) 275-306, see p. 304, Problem 5]. In this work, we reduce the minimization problem of probabilistic and quantum automata to finding a solution of a system of algebraic polynomial (in)equations. An EXPSPACE upper bound on the complexity of the minimization problem is derived by applying [email protected]?s algorithm. More specifically, we show that the state minimization of probabilistic automata, measure-once quantum automata, measure-many quantum automata, measure-once generalized quantum automata, and measure-many generalized quantum automata is decidable and in EXPSPACE. Finally, we also solve an open problem concerning minimal covering of stochastic sequential machines [A. Paz, Introduction to Probabilistic Automata, Academic Press, New York, 1971, p. 43].

[1]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[2]  G. Sacks A DECISION METHOD FOR ELEMENTARY ALGEBRA AND GEOMETRY , 2003 .

[3]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[5]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[6]  H. S. Allen The Quantum Theory , 1928, Nature.

[7]  Christel Baier,et al.  Probabilistic ω-automata , 2012, JACM.

[8]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[9]  Wen-Guey Tzeng,et al.  A Polynomial-Time Algorithm for the Equivalence of Probabilistic Automata , 1992, SIAM J. Comput..

[10]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[11]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[12]  Jozef Gruska,et al.  Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[13]  James Renegar,et al.  A faster PSPACE algorithm for deciding the existential theory of the reals , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[14]  M. W. Shields An Introduction to Automata Theory , 1988 .

[15]  Oscar H. IBARm Information and Control , 1957, Nature.

[16]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[17]  Lihua Wu,et al.  Characterizations of one-way general quantum finite automata , 2009, Theor. Comput. Sci..

[18]  Alex Brodsky,et al.  Characterizations of 1-Way Quantum Finite Automata , 2002, SIAM J. Comput..

[19]  Azaria Paz,et al.  Probabilistic automata , 2003 .

[20]  A. C. Cem Say,et al.  Unbounded-error quantum computation with small space bounds , 2010, Inf. Comput..

[21]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[22]  R. Feynman Simulating physics with computers , 1999 .

[23]  Daowen Qiu,et al.  A note on quantum sequential machines , 2009, Theor. Comput. Sci..

[24]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[25]  P. Benioff The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .

[26]  A. C. Cem Say,et al.  Languages Recognized with Unbounded Error by Quantum Finite Automata , 2008, CSR.

[27]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[28]  Andris Ambainis,et al.  1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[29]  Daowen Qiu,et al.  Determining the equivalence for one-way quantum finite automata , 2007, Theor. Comput. Sci..

[30]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[31]  Azaria Paz,et al.  Introduction to probabilistic automata (Computer science and applied mathematics) , 1971 .