Foveal color perception: Minimal thresholds at a boundary between perceptual categories

Human color vision depends on the relative rates at which photons are absorbed by the three classes of retinal cone cell. The ratios of these cone absorptions can be represented in a continuous two-dimensional space, but human perception imposes discrete hue categories on this space. We ask whether discrimination is enhanced at the boundary between color categories, as it is at the boundary between speech sounds. Measuring foveal color discrimination under neutral conditions of adaptation, we find a region of enhanced discrimination in color space that corresponds approximately to the subjective category boundary between reddish and greenish hues. We suggest that these chromaticities are ones at which an opponent neural channel is in equilibrium. This channel would be 'non-cardinal', in that its signals would not correspond to either axis of the MacLeod-Boynton chromaticity diagram.

[1]  D. Dacey,et al.  Origins of perception : retinal ganglion cell diversity and the creation of parallel visual pathways , 2011 .

[2]  W. Rushton Pigments and signals in colour vision. , 1972, The Journal of physiology.

[3]  R. L. Valois,et al.  A multi-stage color model , 1993, Vision Research.

[4]  B. Regan John Dalton’s Colour Vision Legacy , 1998 .

[5]  I R L Davies,et al.  Lateralization of categorical perception of color changes with color term acquisition , 2008, Proceedings of the National Academy of Sciences.

[6]  ßjss,et al.  Kaiserliche Akademie der Wissenschaften in Wien , 2005, Österreichische botanische Zeitschrift.

[7]  A. Stockman,et al.  The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype , 2000, Vision Research.

[8]  K. J. Craik The effect of adaptation on differential brightness discrimination , 1938, The Journal of physiology.

[9]  B. C. Griffith,et al.  The discrimination of speech sounds within and across phoneme boundaries. , 1957, Journal of experimental psychology.

[10]  D. Macleod,et al.  Ideal white can be yellowish or bluish, but not reddish or greenish , 2010 .

[11]  D. Dacey,et al.  Colour coding in the primate retina: diverse cell types and cone-specific circuitry , 2003, Current Opinion in Neurobiology.

[12]  Michael C. Frank,et al.  Russian blues reveal effects of language on color discrimination , 2007, Proceedings of the National Academy of Sciences.

[13]  D. L. Macadam Visual Sensitivities to Color Differences in Daylight , 1942 .

[14]  D. Roberson,et al.  Thresholds for color discrimination in English and Korean speakers , 2009, Cognition.

[15]  G. K. Rolf,et al.  Variability in Unique Hue Selection: A Surprising Phenomenon , 2004 .

[16]  Michael A Webster,et al.  Variations in normal color vision. III. Unique hues in Indian and United States observers. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  D. Carden,et al.  ( Eds ) ' John Dalton ' s Colour Vision Legacy ' , 1997 , Taylor & Francis , London On the Nature of Unique Hues , 2011 .

[18]  J. Mollon,et al.  Luminance noise and the rapid determination of discrimination ellipses in colour deficiency , 1994, Vision Research.

[19]  W. Rushton Review Lecture. Pigments and signals in colour vision , 1972 .

[20]  E J Chichilnisky,et al.  Cone inputs to simple and complex cells in V1 of awake macaque. , 2007, Journal of neurophysiology.

[21]  Jonathan Winawer,et al.  Language, Categorization, and Visual Search , 2004 .

[22]  J. Mollon,et al.  Comparison at a Distance , 2003, Perception.

[23]  K. Gegenfurtner,et al.  Categorical reaction times for equally discriminable colours , 2009 .

[24]  R. M. Boynton,et al.  Chromaticity diagram showing cone excitation by stimuli of equal luminance. , 1979, Journal of the Optical Society of America.

[25]  A. L. Byzov,et al.  On the mechanisms of visual adaptation. , 1971, Vision Research.

[26]  郁夫 藤村,et al.  色対比と Color Appearance , 1970 .

[27]  E N Pugh,et al.  Red/Green color opponency at detection threshold. , 1983, Science.

[28]  J. Mollon,et al.  A neural basis for unique hues? , 2009, Current Biology.

[29]  John D. Mollon,et al.  Discrimination ellipses in the MacLeod-Boynton diagram: Results for normal and colour-deficient subjects obtained with a CRT display , 1995 .

[30]  G. B. Wetherill,et al.  SEQUENTIAL ESTIMATION OF POINTS ON A PSYCHOMETRIC FUNCTION. , 1965, The British journal of mathematical and statistical psychology.

[31]  J. Pokorny,et al.  Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[32]  D. Tolhurst,et al.  Trichromatic colour opponency in ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[33]  Qasim Zaidi,et al.  Colour constancy in context: roles for local adaptation and levels of reference. , 2004, Journal of vision.

[34]  J. Mollon Monge: The Verriest Lecture, Lyon, July 2005 , 2006, Visual Neuroscience.

[35]  P. Gouras Identification of cone mechanisms in monkey ganglion cells , 1968, The Journal of physiology.

[36]  D. Roberson,et al.  Categorical perception of colour in the left and right visual field is verbally mediated: Evidence from Korean , 2008, Cognition.

[37]  J. D. Mollon,et al.  The comparison of spatially separated colours , 2006, Vision Research.

[38]  J. Krauskopf,et al.  Color discrimination and adaptation , 1992, Vision Research.

[39]  P. Kay,et al.  Whorf hypothesis is supported in the right visual field but not the left. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[40]  R M Boynton,et al.  Uniqueness of perceived hues investigated with a continuous judgmental technique. , 1966, Journal of experimental psychology.

[41]  Jack M. Loomis,et al.  Effects of chromatic adaptation on color discrimination and color appearance , 1979, Vision Research.

[42]  V. C. Smith,et al.  The abney effect: Chromaticity coordinates of unique and other constant hues , 1984, Vision Research.

[43]  J. Pokorny,et al.  3 – Color Matching and Color Discrimination , 2003 .

[44]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[45]  D. W. Heeley,et al.  Cardinal directions of color space , 1982, Vision Research.

[46]  Hannah R. Joo,et al.  Characterization of a novel large-field cone bipolar cell type in the primate retina: Evidence for selective cone connections , 2010, Visual Neuroscience.

[47]  I Abramov,et al.  Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque. , 1967, Journal of neurophysiology.

[48]  Robert M. Boynton,et al.  A flaw in equations for predicting chromatic differences , 1983 .

[49]  P. Kay,et al.  Newly trained lexical categories produce lateralized categorical perception of color , 2010, Proceedings of the National Academy of Sciences.

[50]  John D. Mollon,et al.  Unique hues in heterozygotes for protan and deutan deficiencies , 1997 .

[51]  J. D. Mollon,et al.  Rayleigh matches and unique green , 1995, Vision Research.

[52]  William R. Mathew,et al.  Color as a Science , 2005 .

[53]  J. Pokorny,et al.  How surrounds affect chromaticity discrimination. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[54]  P. Kay,et al.  Color appearance and the emergence and evolution of basic color lexicons , 1999 .

[55]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[56]  S. Shevell,et al.  Color appearance under chromatic adaptation varied along theoretically significant axes in color space. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[57]  J D Mollon,et al.  Parafoveal color discrimination: a chromaticity locus of enhanced discrimination. , 2011, Journal of vision.

[58]  J. Pokorny,et al.  Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.

[59]  Bevil R. Conway,et al.  Spatial Structure of Cone Inputs to Color Cells in Alert Macaque Primary Visual Cortex (V-1) , 2001, The Journal of Neuroscience.

[60]  Barry B. Lee,et al.  Neurones with strong inhibitory s-cone inputs in the macaque lateral geniculate nucleus , 1986, Vision Research.

[61]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[62]  V. Volbrecht,et al.  Unique hue judgments as a function of test size in the fovea and at 20-deg temporal eccentricity. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[63]  P. Lennie,et al.  Functional Asymmetries in Visual Pathways Carrying S-Cone Signals in Macaque , 2008, The Journal of Neuroscience.