The JWST Extragalactic Mock Catalog: Modeling Galaxy Populations from the UV through the Near-IR over 13 Billion Years of Cosmic History

We present an original phenomenological model to describe the evolution of galaxy number counts, morphologies, and spectral energy distributions across a wide range of redshifts ($0.2\lt z\lt 15$) and stellar masses $[\mathrm{log}(M/{M}_{\odot })\geqslant 6]$. Our model follows observed mass and luminosity functions of both star-forming and quiescent galaxies, and reproduces the redshift evolution of colors, sizes, star formation, and chemical properties of the observed galaxy population. Unlike other existing approaches, our model includes a self-consistent treatment of stellar and photoionized gas emission and dust attenuation based on the beagle tool. The mock galaxy catalogs generated with our new model can be used to simulate and optimize extragalactic surveys with future facilities such as the James Webb Space Telescope (JWST), and to enable critical assessments of analysis procedures, interpretation tools, and measurement systematics for both photometric and spectroscopic data. As a first application of this work, we make predictions for the upcoming JWST Advanced Deep Extragalactic Survey (JADES), a joint program of the JWST/NIRCam and NIRSpec Guaranteed Time Observations teams. We show that JADES will detect, with NIRCam imaging, 1000s of galaxies at z gsim 6, and 10s at z gsim 10 at ${m}_{{AB}}\lesssim 30$ (5σ) within the 236 arcmin2 of the survey. The JADES data will enable accurate constraints on the evolution of the UV luminosity function at z > 8, and resolve the current debate about the rate of evolution of galaxies at z gsim 8. Ready-to-use mock catalogs and software to generate new realizations are publicly available as the JAdes extraGalactic Ultradeep Artificial Realizations (JAGUAR) package.

[1]  A. Coil,et al.  THE MOSDEF SURVEY: MEASUREMENTS OF BALMER DECREMENTS AND THE DUST ATTENUATION CURVE AT REDSHIFTS z ∼ 1.4–2.6 , 2015, 1504.02782.

[2]  R. Bouwens,et al.  The Dearth of z ∼ 10 Galaxies in All HST Legacy Fields—The Rapid Evolution of the Galaxy Population in the First 500 Myr , 2017, 1710.11131.

[3]  S. Wilkins,et al.  The ultraviolet properties of star-forming galaxies – I. HST WFC3 observations of very high redshift galaxies , 2011, 1106.5977.

[4]  J. Kneib,et al.  NEW CONSTRAINTS ON THE FAINT END OF THE UV LUMINOSITY FUNCTION AT z ∼ 7–8 USING THE GRAVITATIONAL LENSING OF THE HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2014, 1409.0512.

[5]  K. Finlator,et al.  Smoothly rising star formation histories during the reionization epoch , 2010, 1005.4066.

[6]  K. Bundy,et al.  THE EVOLUTIONARY HISTORY OF LYMAN BREAK GALAXIES BETWEEN REDSHIFT 4 AND 6: OBSERVING SUCCESSIVE GENERATIONS OF MASSIVE GALAXIES IN FORMATION , 2009, 0902.2907.

[7]  B. Elmegreen,et al.  BULGE AND CLUMP EVOLUTION IN HUBBLE ULTRA DEEP FIELD CLUMP CLUSTERS, CHAINS AND SPIRAL GALAXIES , 2008, 0810.5404.

[8]  D. Tucker,et al.  REST-FRAME OPTICAL SPECTRA OF THREE STRONGLY LENSED GALAXIES AT z ∼ 2 , 2009, 0906.2197.

[9]  O. Fèvre,et al.  HST Imaging of the Brightest z ∼ 8–9 Galaxies from UltraVISTA: The Extreme Bright End of the UV Luminosity Function , 2017, 1706.04613.

[10]  M. L. N. Ashby,et al.  THE MOST LUMINOUS z ∼ 9–10 GALAXY CANDIDATES YET FOUND: THE LUMINOSITY FUNCTION, COSMIC STAR-FORMATION RATE, AND THE FIRST MASS DENSITY ESTIMATE AT 500 Myr , 2013, 1309.2280.

[11]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[12]  M. Oguri,et al.  Full-data Results of Hubble Frontier Fields: UV Luminosity Functions at z ∼ 6–10 and a Consistent Picture of Cosmic Reionization , 2017, 1702.04867.

[13]  C. Baugh,et al.  Predictions for deep galaxy surveys with JWST from ΛCDM. , 2017, 1702.02146.

[14]  Leiden,et al.  New insights into the stellar content and physical conditions of star-forming galaxies at z = 2-3 from spectral modelling , 2008, 0801.1678.

[15]  J. Dunlop,et al.  CANDELS: THE CONTRIBUTION OF THE OBSERVED GALAXY POPULATION TO COSMIC REIONIZATION , 2012, 1206.0735.

[16]  Toru Yamada,et al.  MOIRCS Deep Survey. IX. Deep Near-Infrared Imaging Data and Source Catalog , 2010, 1012.2115.

[17]  A. Fontana,et al.  The evolution of the equivalent width of the Hα emission line and specific star formation rate in star-forming galaxies at 1 < z < 5 , 2015, 1511.01911.

[18]  R. Ellis,et al.  A new multifield determination of the galaxy luminosity function at z = 7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging , 2012, 1212.5222.

[19]  M. Franx,et al.  STAR FORMATION RATES AND STELLAR MASSES OF z = 7–8 GALAXIES FROM IRAC OBSERVATIONS OF THE WFC3/IR EARLY RELEASE SCIENCE AND THE HUDF FIELDS , 2009, 0911.1356.

[20]  C. Conselice The Evolution of Galaxy Structure Over Cosmic Time , 2014, 1403.2783.

[21]  P. P. van der Werf,et al.  ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: THE INFRARED EXCESS OF UV-SELECTED z = 2–10 GALAXIES AS A FUNCTION OF UV-CONTINUUM SLOPE AND STELLAR MASS , 2016, 1606.05280.

[22]  Alan R. Duffy,et al.  THE THEORETICAL ASTROPHYSICAL OBSERVATORY: CLOUD-BASED MOCK GALAXY CATALOGS , 2014, 1403.5270.

[23]  Edinburgh,et al.  COSMIC REIONIZATION AND EARLY STAR-FORMING GALAXIES: A JOINT ANALYSIS OF NEW CONSTRAINTS FROM PLANCK AND THE HUBBLE SPACE TELESCOPE , 2015, 1502.02024.

[24]  R. Bouwens,et al.  EXPANDED SEARCH FOR z ∼ 10 GALAXIES FROM HUDF09, ERS, AND CANDELS DATA: EVIDENCE FOR ACCELERATED EVOLUTION AT z > 8? , 2011, 1105.2297.

[25]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[26]  R. Bouwens,et al.  INFERRED Hα FLUX AS A STAR FORMATION RATE INDICATOR AT z ∼ 4–5: IMPLICATIONS FOR DUST PROPERTIES, BURSTINESS, AND THE z = 4–8 STAR FORMATION RATE FUNCTIONS , 2015, 1511.08808.

[27]  P. Kurczynski,et al.  UVUDF: UV Luminosity Functions at the Cosmic High Noon , 2017, 1702.06953.

[28]  B. Garilli,et al.  The evolving star formation rate: M⋆ relation and sSFR since z ≃ 5 from the VUDS spectroscopic survey , 2014, 1411.5687.

[29]  M. Schmidt The Rate of Star Formation , 1959 .

[30]  Chien Y. Peng,et al.  STRUCTURAL PARAMETERS OF GALAXIES IN CANDELS , 2012, 1211.6954.

[31]  C. Conselice,et al.  CANDELS: THE EVOLUTION OF GALAXY REST-FRAME ULTRAVIOLET COLORS FROM z = 8 TO 4 , 2011, 1110.3785.

[32]  Yicheng Guo,et al.  Structural Properties of Central Galaxies in Groups and Clusters , 2009, 0901.1150.

[33]  R. Bouwens,et al.  Quantifying the UV-continuum slopes of galaxies to z ∼ 10 using deep Hubble+Spitzer/IRAC observations , 2015, 1510.01514.

[34]  Dust Attenuation in Late-Type Galaxies. I. Effects on Bulge and Disk Components , 2004, astro-ph/0409183.

[35]  E. Choi,et al.  Synthetic nebular emission from massive galaxies - I: origin of the cosmic evolution of optical emission-line ratios , 2017, 1706.00010.

[36]  Ipac,et al.  ULTRA-FAINT ULTRAVIOLET GALAXIES AT z ∼ 2 BEHIND THE LENSING CLUSTER A1689: THE LUMINOSITY FUNCTION, DUST EXTINCTION, AND STAR FORMATION RATE DENSITY , 2013, 1305.2413.

[37]  J. Dunlop,et al.  New redshift z ≃ 9 galaxies in the Hubble Frontier Fields: implications for early evolution of the UV luminosity density , 2014, 1412.1472.

[38]  R. Bouwens,et al.  Mean Hα+[N II]+[S II] EW inferred for star-forming galaxies at z ~ 5.1-5.4 using high-quality Spitzer/IRAC photometry , 2015, 1509.02167.

[39]  S. Ravindranath,et al.  THE PROGENITORS OF THE COMPACT EARLY-TYPE GALAXIES AT HIGH REDSHIFT , 2013, 1310.3819.

[40]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[41]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[42]  H. Rix,et al.  THE PHYSICAL ORIGINS OF THE MORPHOLOGY–DENSITY RELATION: EVIDENCE FOR GAS STRIPPING FROM THE SLOAN DIGITAL SKY SURVEY , 2010, 1004.0319.

[43]  S. Finkelstein,et al.  Observational Searches for Star-Forming Galaxies at z > 6 , 2015, Publications of the Astronomical Society of Australia.

[44]  S. E. Persson,et al.  THE SIZES OF MASSIVE QUIESCENT AND STAR-FORMING GALAXIES AT z ∼ 4 WITH ZFOURGE AND CANDELS , 2015, 1506.01380.

[45]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[46]  AMAZE - I. The evolution of the mass–metallicity relation at z $>$ 3 , 2008, 0806.2410.

[47]  Mohammad Akhlaghi,et al.  Great Optically Luminous Dropout Research Using Subaru HSC (GOLDRUSH). I. UV Luminosity Functions at $z \sim 4-7$ Derived with the Half-Million Dropouts on the 100 deg$^2$ Sky , 2017, 1704.06004.

[48]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[49]  M. Franx,et al.  ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.

[50]  D. Schaerer,et al.  The impact of nebular emission on the ages of z~6 galaxies , 2009, 0905.0866.

[51]  S. Faber,et al.  Velocity dispersions and mass-to-light ratios for elliptical galaxies. , 1976 .

[52]  S. Ravindranath,et al.  UVUDF: ULTRAVIOLET THROUGH NEAR-INFRARED CATALOG AND PHOTOMETRIC REDSHIFTS OF GALAXIES IN THE HUBBLE ULTRA DEEP FIELD , 2015, 1505.01160.

[53]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[54]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[55]  I. P'erez-Fournon,et al.  Frontier Fields: Combining HST, VLT, and Spitzer data to explore the z ~ 8 Universe behind the lensing cluster MACSJ0416.1−2403 , 2014, 1412.1089.

[56]  R. Bouwens,et al.  THE SIZES OF CANDIDATE GALAXIES z∼ 9−10: CONFIRMATION OF THE BRIGHT CANDELS SAMPLE AND RELATION WITH LUMINOSITY AND MASS , 2014, 1406.1180.

[57]  R. Pelló,et al.  Evolution of red-sequence cluster galaxies from redshift 0.8 to 0.4: ages, metallicities, and morphologies , 2009, 0902.3392.

[58]  M. Dopita,et al.  UV-DROPOUT GALAXIES IN THE GOODS-SOUTH FIELD FROM WFC3 EARLY RELEASE SCIENCE OBSERVATIONS , 2010, 1004.5141.

[59]  L. Hunt,et al.  Coevolution of metallicity and star formation in galaxies to z=3.7: I. A fundamental plane , 2016, 1608.05417.

[60]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[61]  G. Bruzual,et al.  Modelling the nebular emission from primeval to present-day star-forming galaxies , 2016, 1607.06086.

[62]  M. Dopita,et al.  THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 EARLY RELEASE SCIENCE DATA: PANCHROMATIC FAINT OBJECT COUNTS FOR 0.2–2 μm WAVELENGTH , 2010, 1005.2776.

[63]  T. Treu,et al.  THE GALAXY UV LUMINOSITY FUNCTION BEFORE THE EPOCH OF REIONIZATION , 2015, Proceedings of the International Astronomical Union.

[64]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[65]  D. Stark Galaxies in the First Billion Years After the Big Bang , 2016 .

[66]  Wolfgang Voges,et al.  The size distribution of galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0301527.

[67]  A. Fontana,et al.  On the Faint End of the Galaxy Luminosity Function in the Epoch of Reionization: Updated Constraints from the HST Frontier Fields , 2017, The Astrophysical Journal.

[68]  J. Ostriker,et al.  Theoretical Challenges in Galaxy Formation , 2016, 1612.06891.

[69]  C. McBride,et al.  Synthetic galaxy images and spectra from the Illustris simulation , 2014, 1411.3717.

[70]  J. Dunlop,et al.  KECK SPECTROSCOPY OF 3 < z < 7 FAINT LYMAN BREAK GALAXIES: THE IMPORTANCE OF NEBULAR EMISSION IN UNDERSTANDING THE SPECIFIC STAR FORMATION RATE AND STELLAR MASS DENSITY , 2012, 1208.3529.

[71]  R. Bouwens,et al.  EVOLUTION OF GALAXY STELLAR MASS FUNCTIONS, MASS DENSITIES, AND MASS-TO-LIGHT RATIOS FROM z ∼ 7 TO z ∼ 4 , 2010, 1008.3901.

[72]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[73]  J. Dunlop,et al.  The colour distribution of galaxies at redshift five , 2013, 1312.4975.

[74]  S. Furlanetto,et al.  Constraints on the star formation efficiency of galaxies during the epoch of reionization , 2015, 1512.06219.

[75]  A. Coil,et al.  The MOSDEF Survey: First Measurement of Nebular Oxygen Abundance at z > 4 , 2017, 1707.05331.

[76]  M. Stiavelli,et al.  Cosmic Variance and Its Effect on the Luminosity Function Determination in Deep High-z Surveys , 2007, 0712.0398.

[77]  J. Dunlop,et al.  A critical analysis of the ultraviolet continuum slopes (β) of high-redshift galaxies: no evidence (yet) for extreme stellar populations at z > 6 , 2011, 1102.5005.

[78]  M. Sawicki,et al.  Keck Deep Fields. II. The Ultraviolet Galaxy Luminosity Function at z ~ 4, 3, and 2* , 2005, astro-ph/0507519.

[79]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[80]  Alison L. Coil,et al.  THE MOSDEF SURVEY: MASS, METALLICITY, AND STAR-FORMATION RATE AT z ∼ 2.3 , 2014, 1408.2521.

[81]  R. McMahon,et al.  Near-infrared properties of i-drop galaxies in the Hubble Ultra Deep Field , 2004, astro-ph/0403585.

[82]  S. Ravindranath,et al.  THE INTERSTELLAR MEDIUM AND FEEDBACK IN THE PROGENITORS OF THE COMPACT PASSIVE GALAXIES AT z  ∼  2 , 2014, 1407.1834.

[83]  P. P. van der Werf,et al.  The Color-Magnitude Distribution of Field Galaxies to z~3: The Evolution and Modeling of the Blue Sequence , 2007, 0705.3325.

[84]  J. Dunlop,et al.  NEW CONSTRAINTS ON COSMIC REIONIZATION FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2013, 1301.1228.

[85]  R. Davé,et al.  The Redshift and Mass Dependence on the Formation of The Hubble Sequence at z>1 from CANDELS/UDS , 2013, 1305.2204.

[86]  A. Fontana,et al.  THE EVOLUTION OF THE GALAXY STELLAR MASS FUNCTION AT z = 4–8: A STEEPENING LOW-MASS-END SLOPE WITH INCREASING REDSHIFT , 2015, 1507.05636.

[87]  A. Fontana,et al.  The galaxy stellar mass function at 3.5 ≤z ≤ 7.5 in the CANDELS/UDS, GOODS-South, and HUDF fields , 2015 .

[88]  A. V. D. Wel,et al.  FORMING COMPACT MASSIVE GALAXIES , 2015, 1506.03085.

[89]  M. Dickinson,et al.  z ∼ 4 Hα EMITTERS IN THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY: TRACING THE DOMINANT MODE FOR GROWTH OF GALAXIES , 2011 .

[90]  Michele Cirasuolo,et al.  EVOLUTION OF THE SIZES OF GALAXIES OVER 7 < z < 12 REVEALED BY THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1212.3869.

[91]  S. Charlot,et al.  Nuclear activity versus star formation: emission-line diagnostics at ultraviolet and optical wavelengths , 2015, 1511.08217.

[92]  J. Dunlop,et al.  Unveiling the nature of bright z ~ 7 galaxies with the Hubble Space Telescope , 2016, 1605.05325.

[93]  R. Bouwens,et al.  The Rest-frame Optical (900 nm) Galaxy Luminosity Function at z ∼ 4–7: Abundance Matching Points to Limited Evolution in the MSTAR/MHALO Ratio at z ≥ 4 , 2016, 1611.09354.

[94]  B. Groves,et al.  The nebular emission of star-forming galaxies in a hierarchical universe , 2014, 1402.5145.

[95]  Nimish Hathi,et al.  THE EVOLUTION OF THE GALAXY REST-FRAME ULTRAVIOLET LUMINOSITY FUNCTION OVER THE FIRST TWO BILLION YEARS , 2014, 1410.5439.

[96]  Ben Forrest,et al.  Effect of Local Environment and Stellar Mass on Galaxy Quenching and Morphology at 0.5 < z < 2.0 , 2017, 1706.03780.

[97]  D. Schaerer,et al.  On the physical properties of z ≈ 6–8 galaxies , 2010, 1002.1090.

[98]  T. Yuan,et al.  A massive, quiescent galaxy at a redshift of 3.717 , 2017, Nature.

[99]  J. Dunlop,et al.  The galaxy UV luminosity function at z≃ 2–4; new results on faint-end slope and the evolution of luminosity density , 2015, 1507.05629.

[100]  R. Bouwens,et al.  CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE z ≈ 11 GALAXY , 2012, 1211.3663.

[101]  Xiaohui Fan,et al.  THE AVERAGE PHYSICAL PROPERTIES AND STAR FORMATION HISTORIES OF THE UV-BRIGHTEST STAR-FORMING GALAXIES AT z ∼ 3.7 , 2010, 1009.3022.

[102]  G. Gräfener,et al.  Grids of model spectra for WN stars, ready for use , 2004 .

[103]  M. Franx,et al.  UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.

[104]  E. al.,et al.  Detectors for the James Webb Space Telescope near-infrared spectrograph. I. Readout mode, noise model, and calibration considerations , 2007, 0706.2344.

[105]  O. Fèvre,et al.  The COSMOS2015 galaxy stellar mass function . Thirteen billion years of stellar mass assembly in ten snapshots , 2017, 1701.02734.

[106]  A. Grazian,et al.  DEEP U BAND AND R IMAGING OF GOODS-SOUTH: OBSERVATIONS, DATA REDUCTION AND FIRST RESULTS, , 2009, 0906.4250.

[107]  E. Gawiser,et al.  THE EVOLUTION OF THE SPECIFIC STAR FORMATION RATE OF MASSIVE GALAXIES TO z ∼ 1.8 IN THE EXTENDED CHANDRA DEEP FIELD SOUTH , 2008, 0809.1426.

[108]  Puragra Guhathakurta,et al.  The DEEP3 Galaxy Redshift Survey: the impact of environment on the size evolution of massive early-type galaxies at intermediate redshift , 2011, 1109.5698.

[109]  Max Pettini,et al.  STRONG NEBULAR LINE RATIOS IN THE SPECTRA of z ∼ 2–3 STAR FORMING GALAXIES: FIRST RESULTS FROM KBSS-MOSFIRE , 2014, 1405.5473.

[110]  R. Bouwens,et al.  THE SPECTRAL ENERGY DISTRIBUTIONS OF z ∼ 8 GALAXIES FROM THE IRAC ULTRA DEEP FIELDS: EMISSION LINES, STELLAR MASSES, AND SPECIFIC STAR FORMATION RATES AT 650 MYR , 2012, 1209.3037.

[111]  S. Ravindranath,et al.  CLUMPY GALAXIES IN CANDELS. I. THE DEFINITION OF UV CLUMPS AND THE FRACTION OF CLUMPY GALAXIES AT 0.5 < z < 3 , 2014, 1410.7398.

[112]  B. Lundgren,et al.  THE NEWFIRM MEDIUM-BAND SURVEY: PHOTOMETRIC CATALOGS, REDSHIFTS, AND THE BIMODAL COLOR DISTRIBUTION OF GALAXIES OUT TO z ∼ 3 , 2011, 1105.4609.

[113]  A. Loeb,et al.  An Empirical Model for the Galaxy Luminosity and Star-Formation Rate Function at High Redshift , 2015, 1507.00999.

[114]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[115]  J. Trump,et al.  ACTIVE GALACTIC NUCLEI EMISSION LINE DIAGNOSTICS AND THE MASS–METALLICITY RELATION UP TO REDSHIFT z ∼ 2: THE IMPACT OF SELECTION EFFECTS AND EVOLUTION , 2014, 1403.6832.

[117]  M. Dickinson,et al.  z~4 Halpha Emitters in GOODS : Tracing the Dominant Mode for Growth of Galaxies , 2011, 1103.4124.

[118]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[119]  H. Rix,et al.  On the importance of using appropriate spectral models to derive physical properties of galaxies at 0.7 < z < 2.8 , 2014, 1411.5689.

[120]  R. Bouwens,et al.  UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.

[121]  P. McCarthy,et al.  VERY STRONG EMISSION-LINE GALAXIES IN THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY AND IMPLICATIONS FOR HIGH-REDSHIFT GALAXIES, , 2011, 1109.0639.

[122]  M. Franx,et al.  UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.

[123]  Oswald H. W. Siegmund,et al.  The Ultraviolet Galaxy Luminosity Function in the Local Universe from GALEX Data , 2004 .

[124]  R. Davé,et al.  Parametrising Star Formation Histories , 2014, 1404.0402.

[125]  S. E. Persson,et al.  THE FOURSTAR GALAXY EVOLUTION SURVEY (ZFOURGE): ULTRAVIOLET TO FAR-INFRARED CATALOGS, MEDIUM-BANDWIDTH PHOTOMETRIC REDSHIFTS WITH IMPROVED ACCURACY, STELLAR MASSES, AND CONFIRMATION OF QUIESCENT GALAXIES TO z ∼ 3.5 , 2016, 1608.07579.

[126]  D. Maccagni,et al.  The Star Formation Rate Density and Dust Attenuation Evolution over 12 Gyr with the VVDS Surveys , 2011, 1109.1005.

[127]  L. Kewley,et al.  THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. IV. EXCITATION STATE AND CHEMICAL ENRICHMENT OF THE INTERSTELLAR MEDIUM , 2016, 1604.06802.

[128]  J. Dunlop,et al.  The z = 9-10 galaxy population in the Hubble Frontier Fields and CLASH surveys: the z = 9 luminosity function and further evidence for a smooth decline in ultraviolet luminosity density at z≥ 8 , 2016, 1602.05199.

[129]  R. Peletier,et al.  MILES: A Medium resolution INT Library of Empirical Spectra , 2006, astro-ph/0607009.

[130]  R. Somerville,et al.  Star formation in semi-analytic galaxy formation models with multiphase gas , 2015, 1503.00755.

[131]  G. Lucia,et al.  The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.

[132]  M. Franx,et al.  LOWER-LUMINOSITY GALAXIES COULD REIONIZE THE UNIVERSE: VERY STEEP FAINT-END SLOPES TO THE UV LUMINOSITY FUNCTIONS AT z ⩾ 5–8 FROM THE HUDF09 WFC3/IR OBSERVATIONS , 2011, 1105.2038.

[133]  J. Dunlop,et al.  Non-parametric analysis of the rest-frame UV sizes and morphological disturbance amongst L* galaxies at 4 , 2014, 1409.1832.

[134]  A. Strom,et al.  RECONCILING THE STELLAR AND NEBULAR SPECTRA OF HIGH-REDSHIFT GALAXIES , 2016, 1605.07186.

[135]  Stefano Casertano,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3754.

[136]  D. Masters,et al.  A TIGHT RELATION BETWEEN N/O RATIO AND GALAXY STELLAR MASS CAN EXPLAIN THE EVOLUTION OF STRONG EMISSION LINE RATIOS WITH REDSHIFT , 2016, 1605.04314.

[137]  Paul W. Angel,et al.  Dark-ages reionization and galaxy formation simulation – IV. UV luminosity functions of high-redshift galaxies , 2015, 1512.00563.

[138]  A. Fontana,et al.  Optical Line Emission from z ∼ 6.8 Sources with Deep Constraints on Lyα Visibility , 2017, 1703.08986.

[139]  L. Kewley,et al.  THEORETICAL EVOLUTION OF OPTICAL STRONG LINES ACROSS COSMIC TIME , 2013, 1307.0508.

[140]  R. Klessen,et al.  Introducing the FirstLight project: UV luminosity function and scaling relations of primeval galaxies , 2017, 1703.02913.

[141]  D. Elbaz,et al.  EGG: hatching a mock Universe from empirical prescriptions , 2016, 1606.05354.

[142]  Marcia J. Rieke,et al.  The near-infrared camera (NIRCam) for the James Webb Space Telescope (JWST) , 2002, SPIE Astronomical Telescopes + Instrumentation.

[143]  L. Girardi,et al.  PARSEC evolutionary tracks of massive stars up to 350 M ☉ at metallicities 0.0001 ≤ Z ≤ 0.04 , 2015, 1506.01681.

[144]  J. Brinchmann,et al.  Inferring gas-phase metallicity gradients of galaxies at the seeing limit : a forward modelling approach , 2017, 1703.01090.

[145]  Masami Ouchi,et al.  MORPHOLOGIES OF ∼190,000 GALAXIES AT z = 0–10 REVEALED WITH HST LEGACY DATA. I. SIZE EVOLUTION , 2015, 1503.07481.

[146]  I. Jørgensen,et al.  STELLAR POPULATIONS AND EVOLUTION OF EARLY-TYPE CLUSTER GALAXIES: CONSTRAINTS FROM OPTICAL IMAGING AND SPECTROSCOPY OF z = 0.5−0.9 GALAXY CLUSTERS , 2013, 1301.3177.

[147]  Mattia Fumagalli,et al.  THE 3D-HST SURVEY: HUBBLE SPACE TELESCOPE WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR ∼100,000 GALAXIES , 2015, 1510.02106.

[148]  S. E. Persson,et al.  EXPLORING THE z = 3–4 MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES , 2014, 1405.1048.

[149]  A. Fontana,et al.  The ages, masses and star formation rates of spectroscopically confirmed z ˜ 6 galaxies in CANDELS , 2012, 1207.2727.

[151]  S. E. Persson,et al.  A SUBSTANTIAL POPULATION OF MASSIVE QUIESCENT GALAXIES AT z ∼ 4 FROM ZFOURGE , 2013, 1312.4952.

[152]  H. Rix,et al.  Simulating and interpreting deep observations in the Hubble Ultra Deep Field with theJWST/NIRSpec low-resolution ‘prism’ , 2017, Monthly Notices of the Royal Astronomical Society.

[153]  Max Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[154]  R. Bouwens,et al.  BRIGHT GALAXIES AT HUBBLE’S REDSHIFT DETECTION FRONTIER: PRELIMINARY RESULTS AND DESIGN FROM THE REDSHIFT z ∼ 9–10 BoRG PURE-PARALLEL HST SURVEY , 2015, 1512.05363.

[155]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[156]  R. Wechsler,et al.  THE RELATION BETWEEN STAR FORMATION RATE AND STELLAR MASS FOR GALAXIES AT 3.5 ⩽ z ⩽ 6.5 IN CANDELS , 2014, 1407.6012.

[157]  D. Schaerer,et al.  Properties of z ~ 3–6 Lyman break galaxies - II. Impact of nebular emission at high redshift , 2012, 1207.3663.

[158]  R. Bouwens,et al.  PROBING THE DAWN OF GALAXIES AT z ∼ 9–12: NEW CONSTRAINTS FROM HUDF12/XDF AND CANDELS DATA , 2013, 1301.6162.

[159]  T. Budavari,et al.  The GALEX-VVDS Measurement of the Evolution of the Far-Ultraviolet Luminosity Density and the Cosmic Star Formation Rate , 2004, astro-ph/0411424.

[160]  D. Coe,et al.  THE UV CONTINUUM OF z > 1 STAR-FORMING GALAXIES IN THE HUBBLE ULTRAVIOLET ULTRADEEP FIELD , 2014, 1407.3680.

[161]  Christopher E. Moody,et al.  A Comparison between Semi-Analytic Model Predictions for the CANDELS Survey , 2013, 1312.3233.

[162]  R. Bouwens,et al.  Extremely Small Sizes for Faint z ∼ 2–8 Galaxies in the Hubble Frontier Fields: A Key Input for Establishing Their Volume Density and UV Emissivity , 2016, 1608.00966.

[163]  R. Bouwens,et al.  HIGH-PRECISION PHOTOMETRIC REDSHIFTS FROM SPITZER/IRAC: EXTREME [3.6] – [4.5] COLORS IDENTIFY GALAXIES IN THE REDSHIFT RANGE z ∼ 6.6 – 6.9 , 2014, 1412.0663.

[164]  S. Finkelstein,et al.  Directly Observing the Galaxies Likely Responsible for Reionization , 2016, 1604.06799.

[165]  M. Nonino,et al.  The Great Observatories Origins Deep Survey ? VLT/ISAAC Near-Infrared Imaging of the GOODS-South Field , 2009, 0912.1306.

[166]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[167]  Carnegie,et al.  CHARTING THE EVOLUTION OF THE AGES AND METALLICITIES OF MASSIVE GALAXIES SINCE z = 0.7 , 2011, Proceedings of the International Astronomical Union.

[168]  S. Furlanetto,et al.  The global 21-cm signal in the context of the high- z galaxy luminosity function , 2016, 1607.00386.

[169]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[170]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[171]  A. Strom,et al.  Nebular Emission Line Ratios in z ≃ 2–3 Star-forming Galaxies with KBSS-MOSFIRE: Exploring the Impact of Ionization, Excitation, and Nitrogen-to-Oxygen Ratio , 2016, 1608.02587.

[172]  C. Baugh,et al.  Mock galaxy redshift catalogues from simulations: implications for Pan‐STARRS1 , 2008, 0810.2300.

[173]  Heidelberg,et al.  Modelling the spectral energy distribution of galaxies. III. Attenuation of stellar light in spiral galaxies , 2004, astro-ph/0401630.

[174]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[175]  H. MacEwen,et al.  Infrared, and Millimeter Wave , 2010 .

[176]  K. Finlator,et al.  A fundamental problem in our understanding of low-mass galaxy evolution , 2012, 1204.4184.

[177]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[178]  C. Conselice,et al.  The mass evolution of the first galaxies: stellar mass functions and star formation rates at 4 < z < 7 in the CANDELS GOODS-South field , 2014, 1408.2527.

[179]  Y. Pei,et al.  Interstellar dust from the Milky Way to the Magellanic Clouds , 1992 .

[180]  R. Muñoz,et al.  Larger sizes of massive quiescent early-type galaxies in clusters than in the field at 0.8 < z < 1.5 , 2013, 1307.0003.

[181]  A. Fontana,et al.  The blue UV slopes of z ~ 4 Lyman break galaxies: implications for the corrected star formation rate density , 2011, 1109.1757.

[182]  J. Silverman,et al.  A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0–6 , 2014, 1405.2041.

[183]  R. Bouwens,et al.  The z ∼ 6 Luminosity Function Fainter than −15 mag from the Hubble Frontier Fields: The Impact of Magnification Uncertainties , 2016, 1610.00283.

[184]  Daniel Foreman-Mackey,et al.  corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..

[185]  M. Franx,et al.  UV-CONTINUUM SLOPES AT z  ∼  4–7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR–MAGNITUDE RELATIONSHIP FOR z ⩾ 4 STAR-FORMING GALAXIES , 2011, 1109.0994.

[186]  Peter Rumler,et al.  The JWST/NIRSpec instrument: update on status and performances , 2016, Astronomical Telescopes + Instrumentation.

[187]  A. J. Cenarro,et al.  Medium-resolution isaac newton telescope library of empirical spectra , 2006 .

[188]  Shannon G. Patel,et al.  3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES , 2014, 1403.3689.

[189]  J. Dunlop,et al.  The unbiased measurement of ultraviolet spectral slopes in low-luminosity galaxies at z ≈ 7 , 2012, 1209.4636.

[190]  H. Rix,et al.  The James Webb Space Telescope , 2006, astro-ph/0606175.

[191]  M. Donahue,et al.  EVIDENCE FOR UBIQUITOUS HIGH-EQUIVALENT-WIDTH NEBULAR EMISSION IN z ∼ 7 GALAXIES: TOWARD A CLEAN MEASUREMENT OF THE SPECIFIC STAR-FORMATION RATE USING A SAMPLE OF BRIGHT, MAGNIFIED GALAXIES , 2013, 1307.5847.

[192]  A. Coil,et al.  Chemical Abundances of DEEP2 Star-forming Galaxies at z~1.0-1.5 , 2005, astro-ph/0509102.

[193]  G. Brammer,et al.  CONSTRAINING THE LOW-MASS SLOPE OF THE STAR FORMATION SEQUENCE AT 0.5 < z < 2.5 , 2014, 1407.1843.

[194]  S. E. Persson,et al.  GALAXY STELLAR MASS FUNCTIONS FROM ZFOURGE/CANDELS: AN EXCESS OF LOW-MASS GALAXIES SINCE z = 2 AND THE RAPID BUILDUP OF QUIESCENT GALAXIES , 2013, 1309.5972.

[195]  Massimo Stiavelli,et al.  The Hubble Ultra Deep Field , 2003, astro-ph/0607632.

[196]  Benjamin D. Johnson,et al.  THE VERY FAINT END OF THE UV LUMINOSITY FUNCTION OVER COSMIC TIME: CONSTRAINTS FROM THE LOCAL GROUP FOSSIL RECORD , 2014, 1409.4772.

[197]  C. Conselice,et al.  CONSTRAINING THE ASSEMBLY OF NORMAL AND COMPACT PASSIVELY EVOLVING GALAXIES FROM REDSHIFT z = 3 TO THE PRESENT WITH CANDELS , 2013, 1303.2689.

[198]  R. Bouwens,et al.  THE BRIGHT END OF THE z ∼ 9 AND z ∼ 10 UV LUMINOSITY FUNCTIONS USING ALL FIVE CANDELS FIELDS , 2015, 1506.01035.

[199]  Carlos S. Frenk,et al.  The eagle simulations of galaxy formation: Public release of halo and galaxy catalogues , 2015, Astron. Comput..

[200]  D. Elbaz,et al.  Exploring the physical properties of local star-forming ULIRGs from the ultraviolet to the infrared , 2010, 1008.2000.

[201]  S. Furlanetto,et al.  A minimalist feedback-regulated model for galaxy formation during the epoch of reionization , 2016, 1611.01169.

[202]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[203]  A. Benson Galacticus: A Semi-Analytic Model of Galaxy Formation , 2010, 1008.1786.

[204]  V. Wild,et al.  The UV continua and inferred stellar populations of galaxies at z ~7-9 revealed by the Hubble Ultra-Deep Field 2012 campaign , 2012, 1212.0860.

[205]  Y. Mellier,et al.  Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.

[206]  Stijn Wuyts,et al.  WHAT TURNS GALAXIES OFF? THE DIFFERENT MORPHOLOGIES OF STAR-FORMING AND QUIESCENT GALAXIES SINCE z ∼ 2 FROM CANDELS , 2011, 1110.3786.

[207]  R. Bouwens,et al.  THE GALAXY LUMINOSITY FUNCTION DURING THE REIONIZATION EPOCH , 2010, 1004.0384.

[208]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[209]  H. Rix,et al.  THE MAJORITY OF COMPACT MASSIVE GALAXIES AT z ∼ 2 ARE DISK DOMINATED , 2011, 1101.2423.

[210]  Ages and metallicities of early-type galaxies in the SDSS: new insight into the physical origin of the colour-magnitude and the Mg2-sigmaV relations , 2006, astro-ph/0605300.

[211]  Peter Rumler,et al.  Overview of the near-infrared spectrograph (NIRSpec) instrument on-board the James Webb Space Telescope (JWST) , 2007, SPIE Optical Engineering + Applications.

[212]  T. Lauer,et al.  A magnified young galaxy from about 500 million years after the Big Bang , 2012, Nature.

[213]  S. Charlot,et al.  Nebular emission from star-forming galaxies , 2001, astro-ph/0101097.

[214]  J. Dunlop,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTIONS OF STAR-FORMING AND QUIESCENT GALAXIES TO z = 4 FROM THE COSMOS/UltraVISTA SURVEY , 2013, 1303.4409.

[215]  Y. Wadadekar,et al.  MoMaF: the Mock Map Facility , 2003, astro-ph/0309305.

[216]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[217]  M. Franx,et al.  A new method for the identification of non-Gaussian line profiles in elliptical galaxies , 1993 .

[218]  Christopher E. Moody,et al.  SEMI-ANALYTIC MODELS FOR THE CANDELS SURVEY: COMPARISON OF PREDICTIONS FOR INTRINSIC GALAXY PROPERTIES , 2014 .

[219]  R. Genzel,et al.  CONSTRAINTS ON THE ASSEMBLY AND DYNAMICS OF GALAXIES. I. DETAILED REST-FRAME OPTICAL MORPHOLOGIES ON KILOPARSEC SCALE OF z ∼ 2 STAR-FORMING GALAXIES , 2010, 1011.1507.

[220]  R. Bouwens,et al.  SLOW EVOLUTION OF THE SPECIFIC STAR FORMATION RATE AT z > 2: THE IMPACT OF DUST, EMISSION LINES, AND A RISING STAR FORMATION HISTORY , 2012, 1208.4362.

[221]  R. Somerville,et al.  Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.

[222]  C. Leitherer,et al.  A LIBRARY OF THEORETICAL ULTRAVIOLET SPECTRA OF MASSIVE, HOT STARS FOR EVOLUTIONARY SYNTHESIS , 2010, 1006.5624.

[223]  Henry C. Ferguson,et al.  CANDELS: THE CORRELATION BETWEEN GALAXY MORPHOLOGY AND STAR FORMATION ACTIVITY AT z ∼ 2 , 2013, 1306.4980.

[224]  S. Wuyts,et al.  FIREWORKS U38-to-24 μm Photometry of the GOODS Chandra Deep Field-South: Multiwavelength Catalog and Total Infrared Properties of Distant Ks-selected Galaxies , 2008 .

[225]  F. Fontanot,et al.  Evaluating and improving semi-analytic modelling of dust in galaxies based on radiative transfer calculations , 2008, 0810.3918.

[226]  N. Yoshida,et al.  Nebular line emission from z > 7 galaxies in a cosmological simulation: rest-frame UV to optical lines , 2015, 1509.00800.

[227]  H. Hildebrandt,et al.  The UV galaxy luminosity function at z = 3–5 from the CFHT Legacy Survey Deep fields , 2010, 1009.0758.

[228]  L. Pentericci,et al.  The evolving slope of the stellar mass function at 0.6 ≤ z < 4.5 from deep WFC3 data , 2011, 1111.5728.

[229]  Star Formation in AEGIS Field Galaxies since z = 1.1: Staged Galaxy Formation and a Model of Mass-dependent Gas Exhaustion , 2007, astro-ph/0703056.

[230]  Tucson,et al.  The size-luminosity relation at z=7 in CANDELS and its implication on reionization , 2012, 1208.0506.

[231]  A. Fontana,et al.  A CRITICAL ASSESSMENT OF STELLAR MASS MEASUREMENT METHODS , 2015, 1505.01501.

[232]  L. Ho,et al.  Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.

[233]  Richard S. Ellis,et al.  CONTAMINATION OF BROADBAND PHOTOMETRY BY NEBULAR EMISSION IN HIGH-REDSHIFT GALAXIES: INVESTIGATIONS WITH KECK'S MOSFIRE NEAR-INFRARED SPECTROGRAPH , 2013, 1306.1518.

[234]  Cambridge,et al.  The star formation rate of the Universe at z~ 6 from the Hubble Ultra-Deep Field , 2004, astro-ph/0403223.

[235]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[236]  Marijn Franx,et al.  Structure and Star Formation in Galaxies out to z = 3: Evidence for Surface Density Dependent Evolution and Upsizing , 2008, 0808.2642.

[237]  R. Bouwens,et al.  z ≳ 7 GALAXIES WITH RED SPITZER/IRAC [3.6]–[4.5] COLORS IN THE FULL CANDELS DATA SET: THE BRIGHTEST-KNOWN GALAXIES AT z ∼ 7–9 AND A PROBABLE SPECTROSCOPIC CONFIRMATION AT z = 7.48 , 2015, 1506.00854.

[238]  R. Davé,et al.  SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS , 2013 .

[239]  Sanjib Sharma,et al.  Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy , 2017, 1706.01629.

[240]  U. Austin,et al.  UVUDF: ULTRAVIOLET IMAGING OF THE HUBBLE ULTRA DEEP FIELD WITH WIDE-FIELD CAMERA 3 , 2013, 1305.1357.

[241]  The University of Tokyo,et al.  An updated analytic model for attenuation by the intergalactic medium , 2014 .

[242]  R. Bouwens,et al.  UV-CONTINUUM SLOPES OF >4000 z ∼ 4–8 GALAXIES FROM THE HUDF/XDF, HUDF09, ERS, CANDELS-SOUTH, AND CANDELS-NORTH FIELDS , 2013, 1306.2950.

[243]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[244]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[245]  Michele Cirasuolo,et al.  THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5–12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1211.6804.

[246]  M. Giavalisco,et al.  The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging , 2003, astro-ph/0309105.

[247]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[248]  O. Fèvre,et al.  A COHERENT STUDY OF EMISSION LINES FROM BROADBAND PHOTOMETRY: SPECIFIC STAR FORMATION RATES AND [O iii]/Hβ RATIO AT 3 < z < 6 , 2016, 1601.07173.

[249]  A. Coil,et al.  THE MOSDEF SURVEY: ELECTRON DENSITY AND IONIZATION PARAMETER AT z ∼ 2.3 , 2015, 1509.03636.

[250]  M. Oguri,et al.  THE SIZES OF z ∼ 6–8 LENSED GALAXIES FROM THE HUBBLE FRONTIER FIELDS ABELL 2744 DATA , 2014, 1410.1535.