The JWST Extragalactic Mock Catalog: Modeling Galaxy Populations from the UV through the Near-IR over 13 Billion Years of Cosmic History
暂无分享,去创建一个
Chris J. Willott | Pierre Ferruit | Sandro Tacchella | Ricardo Amorin | Santiago Arribas | Marcia Rieke | Christopher N.A. Willmer | Bernd Husemann | Eiichi Egami | Stacey Alberts | Brant E. Robertson | Timothy D. Rawle | Roberto Maiolino | Stefi Baum | Daniel J. Eisenstein | D. Eisenstein | B. Robertson | M. Rieke | C. Willmer | R. Maiolino | P. Ferruit | S. Arribas | S. Baum | S. Charlot | A. Bunker | B. Husemann | D. Stark | S. Carniani | C. Willott | E. Egami | S. Tacchella | S. Alberts | T. Rawle | R. Smit | E. Curtis-Lake | R. Amorín | M. Maseda | Andrew Bunker | Christina C. Williams | K. Hainline | J. Chevallard | R. Endsley | Sara Crandall | Jacopo Chevallard | Emma Curtis-Lake | Stephane Charlot | Daniel P. Stark | Renske Smit | Michael V. Maseda | Kevin N. Hainline | Ryan Endsley | Stefano Carniani | Sara Crandall | C. Williams
[1] A. Coil,et al. THE MOSDEF SURVEY: MEASUREMENTS OF BALMER DECREMENTS AND THE DUST ATTENUATION CURVE AT REDSHIFTS z ∼ 1.4–2.6 , 2015, 1504.02782.
[2] R. Bouwens,et al. The Dearth of z ∼ 10 Galaxies in All HST Legacy Fields—The Rapid Evolution of the Galaxy Population in the First 500 Myr , 2017, 1710.11131.
[3] S. Wilkins,et al. The ultraviolet properties of star-forming galaxies – I. HST WFC3 observations of very high redshift galaxies , 2011, 1106.5977.
[4] J. Kneib,et al. NEW CONSTRAINTS ON THE FAINT END OF THE UV LUMINOSITY FUNCTION AT z ∼ 7–8 USING THE GRAVITATIONAL LENSING OF THE HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2014, 1409.0512.
[5] K. Finlator,et al. Smoothly rising star formation histories during the reionization epoch , 2010, 1005.4066.
[6] K. Bundy,et al. THE EVOLUTIONARY HISTORY OF LYMAN BREAK GALAXIES BETWEEN REDSHIFT 4 AND 6: OBSERVING SUCCESSIVE GENERATIONS OF MASSIVE GALAXIES IN FORMATION , 2009, 0902.2907.
[7] B. Elmegreen,et al. BULGE AND CLUMP EVOLUTION IN HUBBLE ULTRA DEEP FIELD CLUMP CLUSTERS, CHAINS AND SPIRAL GALAXIES , 2008, 0810.5404.
[8] D. Tucker,et al. REST-FRAME OPTICAL SPECTRA OF THREE STRONGLY LENSED GALAXIES AT z ∼ 2 , 2009, 0906.2197.
[9] O. Fèvre,et al. HST Imaging of the Brightest z ∼ 8–9 Galaxies from UltraVISTA: The Extreme Bright End of the UV Luminosity Function , 2017, 1706.04613.
[10] M. L. N. Ashby,et al. THE MOST LUMINOUS z ∼ 9–10 GALAXY CANDIDATES YET FOUND: THE LUMINOSITY FUNCTION, COSMIC STAR-FORMATION RATE, AND THE FIRST MASS DENSITY ESTIMATE AT 500 Myr , 2013, 1309.2280.
[11] S. Ravindranath,et al. CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.
[12] M. Oguri,et al. Full-data Results of Hubble Frontier Fields: UV Luminosity Functions at z ∼ 6–10 and a Consistent Picture of Cosmic Reionization , 2017, 1702.04867.
[13] C. Baugh,et al. Predictions for deep galaxy surveys with JWST from ΛCDM. , 2017, 1702.02146.
[14] Leiden,et al. New insights into the stellar content and physical conditions of star-forming galaxies at z = 2-3 from spectral modelling , 2008, 0801.1678.
[15] J. Dunlop,et al. CANDELS: THE CONTRIBUTION OF THE OBSERVED GALAXY POPULATION TO COSMIC REIONIZATION , 2012, 1206.0735.
[16] Toru Yamada,et al. MOIRCS Deep Survey. IX. Deep Near-Infrared Imaging Data and Source Catalog , 2010, 1012.2115.
[17] A. Fontana,et al. The evolution of the equivalent width of the Hα emission line and specific star formation rate in star-forming galaxies at 1 < z < 5 , 2015, 1511.01911.
[18] R. Ellis,et al. A new multifield determination of the galaxy luminosity function at z = 7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging , 2012, 1212.5222.
[19] M. Franx,et al. STAR FORMATION RATES AND STELLAR MASSES OF z = 7–8 GALAXIES FROM IRAC OBSERVATIONS OF THE WFC3/IR EARLY RELEASE SCIENCE AND THE HUDF FIELDS , 2009, 0911.1356.
[20] C. Conselice. The Evolution of Galaxy Structure Over Cosmic Time , 2014, 1403.2783.
[21] P. P. van der Werf,et al. ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: THE INFRARED EXCESS OF UV-SELECTED z = 2–10 GALAXIES AS A FUNCTION OF UV-CONTINUUM SLOPE AND STELLAR MASS , 2016, 1606.05280.
[22] Alan R. Duffy,et al. THE THEORETICAL ASTROPHYSICAL OBSERVATORY: CLOUD-BASED MOCK GALAXY CATALOGS , 2014, 1403.5270.
[23] Edinburgh,et al. COSMIC REIONIZATION AND EARLY STAR-FORMING GALAXIES: A JOINT ANALYSIS OF NEW CONSTRAINTS FROM PLANCK AND THE HUBBLE SPACE TELESCOPE , 2015, 1502.02024.
[24] R. Bouwens,et al. EXPANDED SEARCH FOR z ∼ 10 GALAXIES FROM HUDF09, ERS, AND CANDELS DATA: EVIDENCE FOR ACCELERATED EVOLUTION AT z > 8? , 2011, 1105.2297.
[25] J. Skilling. Nested sampling for general Bayesian computation , 2006 .
[26] R. Bouwens,et al. INFERRED Hα FLUX AS A STAR FORMATION RATE INDICATOR AT z ∼ 4–5: IMPLICATIONS FOR DUST PROPERTIES, BURSTINESS, AND THE z = 4–8 STAR FORMATION RATE FUNCTIONS , 2015, 1511.08808.
[27] P. Kurczynski,et al. UVUDF: UV Luminosity Functions at the Cosmic High Noon , 2017, 1702.06953.
[28] B. Garilli,et al. The evolving star formation rate: M⋆ relation and sSFR since z ≃ 5 from the VUDS spectroscopic survey , 2014, 1411.5687.
[29] M. Schmidt. The Rate of Star Formation , 1959 .
[30] Chien Y. Peng,et al. STRUCTURAL PARAMETERS OF GALAXIES IN CANDELS , 2012, 1211.6954.
[31] C. Conselice,et al. CANDELS: THE EVOLUTION OF GALAXY REST-FRAME ULTRAVIOLET COLORS FROM z = 8 TO 4 , 2011, 1110.3785.
[32] Yicheng Guo,et al. Structural Properties of Central Galaxies in Groups and Clusters , 2009, 0901.1150.
[33] R. Bouwens,et al. Quantifying the UV-continuum slopes of galaxies to z ∼ 10 using deep Hubble+Spitzer/IRAC observations , 2015, 1510.01514.
[34] Dust Attenuation in Late-Type Galaxies. I. Effects on Bulge and Disk Components , 2004, astro-ph/0409183.
[35] E. Choi,et al. Synthetic nebular emission from massive galaxies - I: origin of the cosmic evolution of optical emission-line ratios , 2017, 1706.00010.
[36] Ipac,et al. ULTRA-FAINT ULTRAVIOLET GALAXIES AT z ∼ 2 BEHIND THE LENSING CLUSTER A1689: THE LUMINOSITY FUNCTION, DUST EXTINCTION, AND STAR FORMATION RATE DENSITY , 2013, 1305.2413.
[37] J. Dunlop,et al. New redshift z ≃ 9 galaxies in the Hubble Frontier Fields: implications for early evolution of the UV luminosity density , 2014, 1412.1472.
[38] R. Bouwens,et al. Mean Hα+[N II]+[S II] EW inferred for star-forming galaxies at z ~ 5.1-5.4 using high-quality Spitzer/IRAC photometry , 2015, 1509.02167.
[39] S. Ravindranath,et al. THE PROGENITORS OF THE COMPACT EARLY-TYPE GALAXIES AT HIGH REDSHIFT , 2013, 1310.3819.
[40] G. Kauffmann,et al. The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.
[41] A. Cimatti,et al. Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.
[42] H. Rix,et al. THE PHYSICAL ORIGINS OF THE MORPHOLOGY–DENSITY RELATION: EVIDENCE FOR GAS STRIPPING FROM THE SLOAN DIGITAL SKY SURVEY , 2010, 1004.0319.
[43] S. Finkelstein,et al. Observational Searches for Star-Forming Galaxies at z > 6 , 2015, Publications of the Astronomical Society of Australia.
[44] S. E. Persson,et al. THE SIZES OF MASSIVE QUIESCENT AND STAR-FORMING GALAXIES AT z ∼ 4 WITH ZFOURGE AND CANDELS , 2015, 1506.01380.
[45] Jr.,et al. The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.
[46] AMAZE - I. The evolution of the mass–metallicity relation at z $>$ 3 , 2008, 0806.2410.
[47] Mohammad Akhlaghi,et al. Great Optically Luminous Dropout Research Using Subaru HSC (GOLDRUSH). I. UV Luminosity Functions at $z \sim 4-7$ Derived with the Half-Million Dropouts on the 100 deg$^2$ Sky , 2017, 1704.06004.
[48] Volker Springel,et al. The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.
[49] M. Franx,et al. ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.
[50] D. Schaerer,et al. The impact of nebular emission on the ages of z~6 galaxies , 2009, 0905.0866.
[51] S. Faber,et al. Velocity dispersions and mass-to-light ratios for elliptical galaxies. , 1976 .
[52] S. Ravindranath,et al. UVUDF: ULTRAVIOLET THROUGH NEAR-INFRARED CATALOG AND PHOTOMETRIC REDSHIFTS OF GALAXIES IN THE HUBBLE ULTRA DEEP FIELD , 2015, 1505.01160.
[53] E. Salpeter. The Luminosity function and stellar evolution , 1955 .
[54] F. Feroz,et al. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.
[55] I. P'erez-Fournon,et al. Frontier Fields: Combining HST, VLT, and Spitzer data to explore the z ~ 8 Universe behind the lensing cluster MACSJ0416.1−2403 , 2014, 1412.1089.
[56] R. Bouwens,et al. THE SIZES OF CANDIDATE GALAXIES z∼ 9−10: CONFIRMATION OF THE BRIGHT CANDELS SAMPLE AND RELATION WITH LUMINOSITY AND MASS , 2014, 1406.1180.
[57] R. Pelló,et al. Evolution of red-sequence cluster galaxies from redshift 0.8 to 0.4: ages, metallicities, and morphologies , 2009, 0902.3392.
[58] M. Dopita,et al. UV-DROPOUT GALAXIES IN THE GOODS-SOUTH FIELD FROM WFC3 EARLY RELEASE SCIENCE OBSERVATIONS , 2010, 1004.5141.
[59] L. Hunt,et al. Coevolution of metallicity and star formation in galaxies to z=3.7: I. A fundamental plane , 2016, 1608.05417.
[60] C. Steidel,et al. A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.
[61] G. Bruzual,et al. Modelling the nebular emission from primeval to present-day star-forming galaxies , 2016, 1607.06086.
[62] M. Dopita,et al. THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 EARLY RELEASE SCIENCE DATA: PANCHROMATIC FAINT OBJECT COUNTS FOR 0.2–2 μm WAVELENGTH , 2010, 1005.2776.
[63] T. Treu,et al. THE GALAXY UV LUMINOSITY FUNCTION BEFORE THE EPOCH OF REIONIZATION , 2015, Proceedings of the International Astronomical Union.
[64] G. Fazio,et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.
[65] D. Stark. Galaxies in the First Billion Years After the Big Bang , 2016 .
[66] Wolfgang Voges,et al. The size distribution of galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0301527.
[67] A. Fontana,et al. On the Faint End of the Galaxy Luminosity Function in the Epoch of Reionization: Updated Constraints from the HST Frontier Fields , 2017, The Astrophysical Journal.
[68] J. Ostriker,et al. Theoretical Challenges in Galaxy Formation , 2016, 1612.06891.
[69] C. McBride,et al. Synthetic galaxy images and spectra from the Illustris simulation , 2014, 1411.3717.
[70] J. Dunlop,et al. KECK SPECTROSCOPY OF 3 < z < 7 FAINT LYMAN BREAK GALAXIES: THE IMPORTANCE OF NEBULAR EMISSION IN UNDERSTANDING THE SPECIFIC STAR FORMATION RATE AND STELLAR MASS DENSITY , 2012, 1208.3529.
[71] R. Bouwens,et al. EVOLUTION OF GALAXY STELLAR MASS FUNCTIONS, MASS DENSITIES, AND MASS-TO-LIGHT RATIOS FROM z ∼ 7 TO z ∼ 4 , 2010, 1008.3901.
[72] L. Kewley,et al. Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.
[73] J. Dunlop,et al. The colour distribution of galaxies at redshift five , 2013, 1312.4975.
[74] S. Furlanetto,et al. Constraints on the star formation efficiency of galaxies during the epoch of reionization , 2015, 1512.06219.
[75] A. Coil,et al. The MOSDEF Survey: First Measurement of Nebular Oxygen Abundance at z > 4 , 2017, 1707.05331.
[76] M. Stiavelli,et al. Cosmic Variance and Its Effect on the Luminosity Function Determination in Deep High-z Surveys , 2007, 0712.0398.
[77] J. Dunlop,et al. A critical analysis of the ultraviolet continuum slopes (β) of high-redshift galaxies: no evidence (yet) for extreme stellar populations at z > 6 , 2011, 1102.5005.
[78] M. Sawicki,et al. Keck Deep Fields. II. The Ultraviolet Galaxy Luminosity Function at z ~ 4, 3, and 2* , 2005, astro-ph/0507519.
[79] D. Wake,et al. 3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.
[80] Alison L. Coil,et al. THE MOSDEF SURVEY: MASS, METALLICITY, AND STAR-FORMATION RATE AT z ∼ 2.3 , 2014, 1408.2521.
[81] R. McMahon,et al. Near-infrared properties of i-drop galaxies in the Hubble Ultra Deep Field , 2004, astro-ph/0403585.
[82] S. Ravindranath,et al. THE INTERSTELLAR MEDIUM AND FEEDBACK IN THE PROGENITORS OF THE COMPACT PASSIVE GALAXIES AT z ∼ 2 , 2014, 1407.1834.
[83] P. P. van der Werf,et al. The Color-Magnitude Distribution of Field Galaxies to z~3: The Evolution and Modeling of the Blue Sequence , 2007, 0705.3325.
[84] J. Dunlop,et al. NEW CONSTRAINTS ON COSMIC REIONIZATION FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2013, 1301.1228.
[85] R. Davé,et al. The Redshift and Mass Dependence on the Formation of The Hubble Sequence at z>1 from CANDELS/UDS , 2013, 1305.2204.
[86] A. Fontana,et al. THE EVOLUTION OF THE GALAXY STELLAR MASS FUNCTION AT z = 4–8: A STEEPENING LOW-MASS-END SLOPE WITH INCREASING REDSHIFT , 2015, 1507.05636.
[87] A. Fontana,et al. The galaxy stellar mass function at 3.5 ≤z ≤ 7.5 in the CANDELS/UDS, GOODS-South, and HUDF fields , 2015 .
[88] A. V. D. Wel,et al. FORMING COMPACT MASSIVE GALAXIES , 2015, 1506.03085.
[89] M. Dickinson,et al. z ∼ 4 Hα EMITTERS IN THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY: TRACING THE DOMINANT MODE FOR GROWTH OF GALAXIES , 2011 .
[90] Michele Cirasuolo,et al. EVOLUTION OF THE SIZES OF GALAXIES OVER 7 < z < 12 REVEALED BY THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1212.3869.
[91] S. Charlot,et al. Nuclear activity versus star formation: emission-line diagnostics at ultraviolet and optical wavelengths , 2015, 1511.08217.
[92] J. Dunlop,et al. Unveiling the nature of bright z ~ 7 galaxies with the Hubble Space Telescope , 2016, 1605.05325.
[93] R. Bouwens,et al. The Rest-frame Optical (900 nm) Galaxy Luminosity Function at z ∼ 4–7: Abundance Matching Points to Limited Evolution in the MSTAR/MHALO Ratio at z ≥ 4 , 2016, 1611.09354.
[94] B. Groves,et al. The nebular emission of star-forming galaxies in a hierarchical universe , 2014, 1402.5145.
[95] Nimish Hathi,et al. THE EVOLUTION OF THE GALAXY REST-FRAME ULTRAVIOLET LUMINOSITY FUNCTION OVER THE FIRST TWO BILLION YEARS , 2014, 1410.5439.
[96] Ben Forrest,et al. Effect of Local Environment and Stellar Mass on Galaxy Quenching and Morphology at 0.5 < z < 2.0 , 2017, 1706.03780.
[97] D. Schaerer,et al. On the physical properties of z ≈ 6–8 galaxies , 2010, 1002.1090.
[98] T. Yuan,et al. A massive, quiescent galaxy at a redshift of 3.717 , 2017, Nature.
[99] J. Dunlop,et al. The galaxy UV luminosity function at z≃ 2–4; new results on faint-end slope and the evolution of luminosity density , 2015, 1507.05629.
[100] R. Bouwens,et al. CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE z ≈ 11 GALAXY , 2012, 1211.3663.
[101] Xiaohui Fan,et al. THE AVERAGE PHYSICAL PROPERTIES AND STAR FORMATION HISTORIES OF THE UV-BRIGHTEST STAR-FORMING GALAXIES AT z ∼ 3.7 , 2010, 1009.3022.
[102] G. Gräfener,et al. Grids of model spectra for WN stars, ready for use , 2004 .
[103] M. Franx,et al. UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.
[104] E. al.,et al. Detectors for the James Webb Space Telescope near-infrared spectrograph. I. Readout mode, noise model, and calibration considerations , 2007, 0706.2344.
[105] O. Fèvre,et al. The COSMOS2015 galaxy stellar mass function . Thirteen billion years of stellar mass assembly in ten snapshots , 2017, 1701.02734.
[106] A. Grazian,et al. DEEP U BAND AND R IMAGING OF GOODS-SOUTH: OBSERVATIONS, DATA REDUCTION AND FIRST RESULTS, , 2009, 0906.4250.
[107] E. Gawiser,et al. THE EVOLUTION OF THE SPECIFIC STAR FORMATION RATE OF MASSIVE GALAXIES TO z ∼ 1.8 IN THE EXTENDED CHANDRA DEEP FIELD SOUTH , 2008, 0809.1426.
[108] Puragra Guhathakurta,et al. The DEEP3 Galaxy Redshift Survey: the impact of environment on the size evolution of massive early-type galaxies at intermediate redshift , 2011, 1109.5698.
[109] Max Pettini,et al. STRONG NEBULAR LINE RATIOS IN THE SPECTRA of z ∼ 2–3 STAR FORMING GALAXIES: FIRST RESULTS FROM KBSS-MOSFIRE , 2014, 1405.5473.
[110] R. Bouwens,et al. THE SPECTRAL ENERGY DISTRIBUTIONS OF z ∼ 8 GALAXIES FROM THE IRAC ULTRA DEEP FIELDS: EMISSION LINES, STELLAR MASSES, AND SPECIFIC STAR FORMATION RATES AT 650 MYR , 2012, 1209.3037.
[111] S. Ravindranath,et al. CLUMPY GALAXIES IN CANDELS. I. THE DEFINITION OF UV CLUMPS AND THE FRACTION OF CLUMPY GALAXIES AT 0.5 < z < 3 , 2014, 1410.7398.
[112] B. Lundgren,et al. THE NEWFIRM MEDIUM-BAND SURVEY: PHOTOMETRIC CATALOGS, REDSHIFTS, AND THE BIMODAL COLOR DISTRIBUTION OF GALAXIES OUT TO z ∼ 3 , 2011, 1105.4609.
[113] A. Loeb,et al. An Empirical Model for the Galaxy Luminosity and Star-Formation Rate Function at High Redshift , 2015, 1507.00999.
[114] J. Baldwin,et al. ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .
[115] J. Trump,et al. ACTIVE GALACTIC NUCLEI EMISSION LINE DIAGNOSTICS AND THE MASS–METALLICITY RELATION UP TO REDSHIFT z ∼ 2: THE IMPACT OF SELECTION EFFECTS AND EVOLUTION , 2014, 1403.6832.
[117] M. Dickinson,et al. z~4 Halpha Emitters in GOODS : Tracing the Dominant Mode for Growth of Galaxies , 2011, 1103.4124.
[118] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[119] H. Rix,et al. On the importance of using appropriate spectral models to derive physical properties of galaxies at 0.7 < z < 2.8 , 2014, 1411.5689.
[120] R. Bouwens,et al. UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.
[121] P. McCarthy,et al. VERY STRONG EMISSION-LINE GALAXIES IN THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY AND IMPLICATIONS FOR HIGH-REDSHIFT GALAXIES, , 2011, 1109.0639.
[122] M. Franx,et al. UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.
[123] Oswald H. W. Siegmund,et al. The Ultraviolet Galaxy Luminosity Function in the Local Universe from GALEX Data , 2004 .
[124] R. Davé,et al. Parametrising Star Formation Histories , 2014, 1404.0402.
[125] S. E. Persson,et al. THE FOURSTAR GALAXY EVOLUTION SURVEY (ZFOURGE): ULTRAVIOLET TO FAR-INFRARED CATALOGS, MEDIUM-BANDWIDTH PHOTOMETRIC REDSHIFTS WITH IMPROVED ACCURACY, STELLAR MASSES, AND CONFIRMATION OF QUIESCENT GALAXIES TO z ∼ 3.5 , 2016, 1608.07579.
[126] D. Maccagni,et al. The Star Formation Rate Density and Dust Attenuation Evolution over 12 Gyr with the VVDS Surveys , 2011, 1109.1005.
[127] L. Kewley,et al. THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. IV. EXCITATION STATE AND CHEMICAL ENRICHMENT OF THE INTERSTELLAR MEDIUM , 2016, 1604.06802.
[128] J. Dunlop,et al. The z = 9-10 galaxy population in the Hubble Frontier Fields and CLASH surveys: the z = 9 luminosity function and further evidence for a smooth decline in ultraviolet luminosity density at z≥ 8 , 2016, 1602.05199.
[129] R. Peletier,et al. MILES: A Medium resolution INT Library of Empirical Spectra , 2006, astro-ph/0607009.
[130] R. Somerville,et al. Star formation in semi-analytic galaxy formation models with multiphase gas , 2015, 1503.00755.
[131] G. Lucia,et al. The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.
[132] M. Franx,et al. LOWER-LUMINOSITY GALAXIES COULD REIONIZE THE UNIVERSE: VERY STEEP FAINT-END SLOPES TO THE UV LUMINOSITY FUNCTIONS AT z ⩾ 5–8 FROM THE HUDF09 WFC3/IR OBSERVATIONS , 2011, 1105.2038.
[133] J. Dunlop,et al. Non-parametric analysis of the rest-frame UV sizes and morphological disturbance amongst L* galaxies at 4 , 2014, 1409.1832.
[134] A. Strom,et al. RECONCILING THE STELLAR AND NEBULAR SPECTRA OF HIGH-REDSHIFT GALAXIES , 2016, 1605.07186.
[135] Stefano Casertano,et al. CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3754.
[136] D. Masters,et al. A TIGHT RELATION BETWEEN N/O RATIO AND GALAXY STELLAR MASS CAN EXPLAIN THE EVOLUTION OF STRONG EMISSION LINE RATIOS WITH REDSHIFT , 2016, 1605.04314.
[137] Paul W. Angel,et al. Dark-ages reionization and galaxy formation simulation – IV. UV luminosity functions of high-redshift galaxies , 2015, 1512.00563.
[138] A. Fontana,et al. Optical Line Emission from z ∼ 6.8 Sources with Deep Constraints on Lyα Visibility , 2017, 1703.08986.
[139] L. Kewley,et al. THEORETICAL EVOLUTION OF OPTICAL STRONG LINES ACROSS COSMIC TIME , 2013, 1307.0508.
[140] R. Klessen,et al. Introducing the FirstLight project: UV luminosity function and scaling relations of primeval galaxies , 2017, 1703.02913.
[141] D. Elbaz,et al. EGG: hatching a mock Universe from empirical prescriptions , 2016, 1606.05354.
[142] Marcia J. Rieke,et al. The near-infrared camera (NIRCam) for the James Webb Space Telescope (JWST) , 2002, SPIE Astronomical Telescopes + Instrumentation.
[143] L. Girardi,et al. PARSEC evolutionary tracks of massive stars up to 350 M ☉ at metallicities 0.0001 ≤ Z ≤ 0.04 , 2015, 1506.01681.
[144] J. Brinchmann,et al. Inferring gas-phase metallicity gradients of galaxies at the seeing limit : a forward modelling approach , 2017, 1703.01090.
[145] Masami Ouchi,et al. MORPHOLOGIES OF ∼190,000 GALAXIES AT z = 0–10 REVEALED WITH HST LEGACY DATA. I. SIZE EVOLUTION , 2015, 1503.07481.
[146] I. Jørgensen,et al. STELLAR POPULATIONS AND EVOLUTION OF EARLY-TYPE CLUSTER GALAXIES: CONSTRAINTS FROM OPTICAL IMAGING AND SPECTROSCOPY OF z = 0.5−0.9 GALAXY CLUSTERS , 2013, 1301.3177.
[147] Mattia Fumagalli,et al. THE 3D-HST SURVEY: HUBBLE SPACE TELESCOPE WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR ∼100,000 GALAXIES , 2015, 1510.02106.
[148] S. E. Persson,et al. EXPLORING THE z = 3–4 MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES , 2014, 1405.1048.
[149] A. Fontana,et al. The ages, masses and star formation rates of spectroscopically confirmed z ˜ 6 galaxies in CANDELS , 2012, 1207.2727.
[151] S. E. Persson,et al. A SUBSTANTIAL POPULATION OF MASSIVE QUIESCENT GALAXIES AT z ∼ 4 FROM ZFOURGE , 2013, 1312.4952.
[152] H. Rix,et al. Simulating and interpreting deep observations in the Hubble Ultra Deep Field with theJWST/NIRSpec low-resolution ‘prism’ , 2017, Monthly Notices of the Royal Astronomical Society.
[153] Max Pettini,et al. [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.
[154] R. Bouwens,et al. BRIGHT GALAXIES AT HUBBLE’S REDSHIFT DETECTION FRONTIER: PRELIMINARY RESULTS AND DESIGN FROM THE REDSHIFT z ∼ 9–10 BoRG PURE-PARALLEL HST SURVEY , 2015, 1512.05363.
[155] G. Bruzual,et al. Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.
[156] R. Wechsler,et al. THE RELATION BETWEEN STAR FORMATION RATE AND STELLAR MASS FOR GALAXIES AT 3.5 ⩽ z ⩽ 6.5 IN CANDELS , 2014, 1407.6012.
[157] D. Schaerer,et al. Properties of z ~ 3–6 Lyman break galaxies - II. Impact of nebular emission at high redshift , 2012, 1207.3663.
[158] R. Bouwens,et al. PROBING THE DAWN OF GALAXIES AT z ∼ 9–12: NEW CONSTRAINTS FROM HUDF12/XDF AND CANDELS DATA , 2013, 1301.6162.
[159] T. Budavari,et al. The GALEX-VVDS Measurement of the Evolution of the Far-Ultraviolet Luminosity Density and the Cosmic Star Formation Rate , 2004, astro-ph/0411424.
[160] D. Coe,et al. THE UV CONTINUUM OF z > 1 STAR-FORMING GALAXIES IN THE HUBBLE ULTRAVIOLET ULTRADEEP FIELD , 2014, 1407.3680.
[161] Christopher E. Moody,et al. A Comparison between Semi-Analytic Model Predictions for the CANDELS Survey , 2013, 1312.3233.
[162] R. Bouwens,et al. Extremely Small Sizes for Faint z ∼ 2–8 Galaxies in the Hubble Frontier Fields: A Key Input for Establishing Their Volume Density and UV Emissivity , 2016, 1608.00966.
[163] R. Bouwens,et al. HIGH-PRECISION PHOTOMETRIC REDSHIFTS FROM SPITZER/IRAC: EXTREME [3.6] – [4.5] COLORS IDENTIFY GALAXIES IN THE REDSHIFT RANGE z ∼ 6.6 – 6.9 , 2014, 1412.0663.
[164] S. Finkelstein,et al. Directly Observing the Galaxies Likely Responsible for Reionization , 2016, 1604.06799.
[165] M. Nonino,et al. The Great Observatories Origins Deep Survey ? VLT/ISAAC Near-Infrared Imaging of the GOODS-South Field , 2009, 0912.1306.
[166] Garth D. Illingworth,et al. AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.
[167] Carnegie,et al. CHARTING THE EVOLUTION OF THE AGES AND METALLICITIES OF MASSIVE GALAXIES SINCE z = 0.7 , 2011, Proceedings of the International Astronomical Union.
[168] S. Furlanetto,et al. The global 21-cm signal in the context of the high- z galaxy luminosity function , 2016, 1607.00386.
[169] S. White,et al. The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.
[170] P. Schechter. An analytic expression for the luminosity function for galaxies , 1976 .
[171] A. Strom,et al. Nebular Emission Line Ratios in z ≃ 2–3 Star-forming Galaxies with KBSS-MOSFIRE: Exploring the Impact of Ionization, Excitation, and Nitrogen-to-Oxygen Ratio , 2016, 1608.02587.
[172] C. Baugh,et al. Mock galaxy redshift catalogues from simulations: implications for Pan‐STARRS1 , 2008, 0810.2300.
[173] Heidelberg,et al. Modelling the spectral energy distribution of galaxies. III. Attenuation of stellar light in spiral galaxies , 2004, astro-ph/0401630.
[174] Timothy M. Heckman,et al. Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.
[175] H. MacEwen,et al. Infrared, and Millimeter Wave , 2010 .
[176] K. Finlator,et al. A fundamental problem in our understanding of low-mass galaxy evolution , 2012, 1204.4184.
[177] P. Kroupa. On the variation of the initial mass function , 2000, astro-ph/0009005.
[178] C. Conselice,et al. The mass evolution of the first galaxies: stellar mass functions and star formation rates at 4 < z < 7 in the CANDELS GOODS-South field , 2014, 1408.2527.
[179] Y. Pei,et al. Interstellar dust from the Milky Way to the Magellanic Clouds , 1992 .
[180] R. Muñoz,et al. Larger sizes of massive quiescent early-type galaxies in clusters than in the field at 0.8 < z < 1.5 , 2013, 1307.0003.
[181] A. Fontana,et al. The blue UV slopes of z ~ 4 Lyman break galaxies: implications for the corrected star formation rate density , 2011, 1109.1757.
[182] J. Silverman,et al. A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0–6 , 2014, 1405.2041.
[183] R. Bouwens,et al. The z ∼ 6 Luminosity Function Fainter than −15 mag from the Hubble Frontier Fields: The Impact of Magnification Uncertainties , 2016, 1610.00283.
[184] Daniel Foreman-Mackey,et al. corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..
[185] M. Franx,et al. UV-CONTINUUM SLOPES AT z ∼ 4–7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR–MAGNITUDE RELATIONSHIP FOR z ⩾ 4 STAR-FORMING GALAXIES , 2011, 1109.0994.
[186] Peter Rumler,et al. The JWST/NIRSpec instrument: update on status and performances , 2016, Astronomical Telescopes + Instrumentation.
[187] A. J. Cenarro,et al. Medium-resolution isaac newton telescope library of empirical spectra , 2006 .
[188] Shannon G. Patel,et al. 3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES , 2014, 1403.3689.
[189] J. Dunlop,et al. The unbiased measurement of ultraviolet spectral slopes in low-luminosity galaxies at z ≈ 7 , 2012, 1209.4636.
[190] H. Rix,et al. The James Webb Space Telescope , 2006, astro-ph/0606175.
[191] M. Donahue,et al. EVIDENCE FOR UBIQUITOUS HIGH-EQUIVALENT-WIDTH NEBULAR EMISSION IN z ∼ 7 GALAXIES: TOWARD A CLEAN MEASUREMENT OF THE SPECIFIC STAR-FORMATION RATE USING A SAMPLE OF BRIGHT, MAGNIFIED GALAXIES , 2013, 1307.5847.
[192] A. Coil,et al. Chemical Abundances of DEEP2 Star-forming Galaxies at z~1.0-1.5 , 2005, astro-ph/0509102.
[193] G. Brammer,et al. CONSTRAINING THE LOW-MASS SLOPE OF THE STAR FORMATION SEQUENCE AT 0.5 < z < 2.5 , 2014, 1407.1843.
[194] S. E. Persson,et al. GALAXY STELLAR MASS FUNCTIONS FROM ZFOURGE/CANDELS: AN EXCESS OF LOW-MASS GALAXIES SINCE z = 2 AND THE RAPID BUILDUP OF QUIESCENT GALAXIES , 2013, 1309.5972.
[195] Massimo Stiavelli,et al. The Hubble Ultra Deep Field , 2003, astro-ph/0607632.
[196] Benjamin D. Johnson,et al. THE VERY FAINT END OF THE UV LUMINOSITY FUNCTION OVER COSMIC TIME: CONSTRAINTS FROM THE LOCAL GROUP FOSSIL RECORD , 2014, 1409.4772.
[197] C. Conselice,et al. CONSTRAINING THE ASSEMBLY OF NORMAL AND COMPACT PASSIVELY EVOLVING GALAXIES FROM REDSHIFT z = 3 TO THE PRESENT WITH CANDELS , 2013, 1303.2689.
[198] R. Bouwens,et al. THE BRIGHT END OF THE z ∼ 9 AND z ∼ 10 UV LUMINOSITY FUNCTIONS USING ALL FIVE CANDELS FIELDS , 2015, 1506.01035.
[199] Carlos S. Frenk,et al. The eagle simulations of galaxy formation: Public release of halo and galaxy catalogues , 2015, Astron. Comput..
[200] D. Elbaz,et al. Exploring the physical properties of local star-forming ULIRGs from the ultraviolet to the infrared , 2010, 1008.2000.
[201] S. Furlanetto,et al. A minimalist feedback-regulated model for galaxy formation during the epoch of reionization , 2016, 1611.01169.
[202] V. Springel,et al. Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.
[203] A. Benson. Galacticus: A Semi-Analytic Model of Galaxy Formation , 2010, 1008.1786.
[204] V. Wild,et al. The UV continua and inferred stellar populations of galaxies at z ~7-9 revealed by the Hubble Ultra-Deep Field 2012 campaign , 2012, 1212.0860.
[205] Y. Mellier,et al. Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.
[206] Stijn Wuyts,et al. WHAT TURNS GALAXIES OFF? THE DIFFERENT MORPHOLOGIES OF STAR-FORMING AND QUIESCENT GALAXIES SINCE z ∼ 2 FROM CANDELS , 2011, 1110.3786.
[207] R. Bouwens,et al. THE GALAXY LUMINOSITY FUNCTION DURING THE REIONIZATION EPOCH , 2010, 1004.0384.
[208] M. Dickinson,et al. Cosmic Star-Formation History , 1996, 1403.0007.
[209] H. Rix,et al. THE MAJORITY OF COMPACT MASSIVE GALAXIES AT z ∼ 2 ARE DISK DOMINATED , 2011, 1101.2423.
[210] Ages and metallicities of early-type galaxies in the SDSS: new insight into the physical origin of the colour-magnitude and the Mg2-sigmaV relations , 2006, astro-ph/0605300.
[211] Peter Rumler,et al. Overview of the near-infrared spectrograph (NIRSpec) instrument on-board the James Webb Space Telescope (JWST) , 2007, SPIE Optical Engineering + Applications.
[212] T. Lauer,et al. A magnified young galaxy from about 500 million years after the Big Bang , 2012, Nature.
[213] S. Charlot,et al. Nebular emission from star-forming galaxies , 2001, astro-ph/0101097.
[214] J. Dunlop,et al. THE EVOLUTION OF THE STELLAR MASS FUNCTIONS OF STAR-FORMING AND QUIESCENT GALAXIES TO z = 4 FROM THE COSMOS/UltraVISTA SURVEY , 2013, 1303.4409.
[215] Y. Wadadekar,et al. MoMaF: the Mock Map Facility , 2003, astro-ph/0309305.
[216] S. M. Fall,et al. A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.
[217] M. Franx,et al. A new method for the identification of non-Gaussian line profiles in elliptical galaxies , 1993 .
[218] Christopher E. Moody,et al. SEMI-ANALYTIC MODELS FOR THE CANDELS SURVEY: COMPARISON OF PREDICTIONS FOR INTRINSIC GALAXY PROPERTIES , 2014 .
[219] R. Genzel,et al. CONSTRAINTS ON THE ASSEMBLY AND DYNAMICS OF GALAXIES. I. DETAILED REST-FRAME OPTICAL MORPHOLOGIES ON KILOPARSEC SCALE OF z ∼ 2 STAR-FORMING GALAXIES , 2010, 1011.1507.
[220] R. Bouwens,et al. SLOW EVOLUTION OF THE SPECIFIC STAR FORMATION RATE AT z > 2: THE IMPACT OF DUST, EMISSION LINES, AND A RISING STAR FORMATION HISTORY , 2012, 1208.4362.
[221] R. Somerville,et al. Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.
[222] C. Leitherer,et al. A LIBRARY OF THEORETICAL ULTRAVIOLET SPECTRA OF MASSIVE, HOT STARS FOR EVOLUTIONARY SYNTHESIS , 2010, 1006.5624.
[223] Henry C. Ferguson,et al. CANDELS: THE CORRELATION BETWEEN GALAXY MORPHOLOGY AND STAR FORMATION ACTIVITY AT z ∼ 2 , 2013, 1306.4980.
[224] S. Wuyts,et al. FIREWORKS U38-to-24 μm Photometry of the GOODS Chandra Deep Field-South: Multiwavelength Catalog and Total Infrared Properties of Distant Ks-selected Galaxies , 2008 .
[225] F. Fontanot,et al. Evaluating and improving semi-analytic modelling of dust in galaxies based on radiative transfer calculations , 2008, 0810.3918.
[226] N. Yoshida,et al. Nebular line emission from z > 7 galaxies in a cosmological simulation: rest-frame UV to optical lines , 2015, 1509.00800.
[227] H. Hildebrandt,et al. The UV galaxy luminosity function at z = 3–5 from the CFHT Legacy Survey Deep fields , 2010, 1009.0758.
[228] L. Pentericci,et al. The evolving slope of the stellar mass function at 0.6 ≤ z < 4.5 from deep WFC3 data , 2011, 1111.5728.
[229] Star Formation in AEGIS Field Galaxies since z = 1.1: Staged Galaxy Formation and a Model of Mass-dependent Gas Exhaustion , 2007, astro-ph/0703056.
[230] Tucson,et al. The size-luminosity relation at z=7 in CANDELS and its implication on reionization , 2012, 1208.0506.
[231] A. Fontana,et al. A CRITICAL ASSESSMENT OF STELLAR MASS MEASUREMENT METHODS , 2015, 1505.01501.
[232] L. Ho,et al. Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.
[233] Richard S. Ellis,et al. CONTAMINATION OF BROADBAND PHOTOMETRY BY NEBULAR EMISSION IN HIGH-REDSHIFT GALAXIES: INVESTIGATIONS WITH KECK'S MOSFIRE NEAR-INFRARED SPECTROGRAPH , 2013, 1306.1518.
[234] Cambridge,et al. The star formation rate of the Universe at z~ 6 from the Hubble Ultra-Deep Field , 2004, astro-ph/0403223.
[235] Paolo Coppi,et al. EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.
[236] Marijn Franx,et al. Structure and Star Formation in Galaxies out to z = 3: Evidence for Surface Density Dependent Evolution and Upsizing , 2008, 0808.2642.
[237] R. Bouwens,et al. z ≳ 7 GALAXIES WITH RED SPITZER/IRAC [3.6]–[4.5] COLORS IN THE FULL CANDELS DATA SET: THE BRIGHTEST-KNOWN GALAXIES AT z ∼ 7–9 AND A PROBABLE SPECTROSCOPIC CONFIRMATION AT z = 7.48 , 2015, 1506.00854.
[238] R. Davé,et al. SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS , 2013 .
[239] Sanjib Sharma,et al. Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy , 2017, 1706.01629.
[240] U. Austin,et al. UVUDF: ULTRAVIOLET IMAGING OF THE HUBBLE ULTRA DEEP FIELD WITH WIDE-FIELD CAMERA 3 , 2013, 1305.1357.
[241] The University of Tokyo,et al. An updated analytic model for attenuation by the intergalactic medium , 2014 .
[242] R. Bouwens,et al. UV-CONTINUUM SLOPES OF >4000 z ∼ 4–8 GALAXIES FROM THE HUDF/XDF, HUDF09, ERS, CANDELS-SOUTH, AND CANDELS-NORTH FIELDS , 2013, 1306.2950.
[243] G. Chabrier. Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.
[244] R. Nichol,et al. Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.
[245] Michele Cirasuolo,et al. THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5–12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1211.6804.
[246] M. Giavalisco,et al. The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging , 2003, astro-ph/0309105.
[247] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[248] O. Fèvre,et al. A COHERENT STUDY OF EMISSION LINES FROM BROADBAND PHOTOMETRY: SPECIFIC STAR FORMATION RATES AND [O iii]/Hβ RATIO AT 3 < z < 6 , 2016, 1601.07173.
[249] A. Coil,et al. THE MOSDEF SURVEY: ELECTRON DENSITY AND IONIZATION PARAMETER AT z ∼ 2.3 , 2015, 1509.03636.
[250] M. Oguri,et al. THE SIZES OF z ∼ 6–8 LENSED GALAXIES FROM THE HUBBLE FRONTIER FIELDS ABELL 2744 DATA , 2014, 1410.1535.