Spectral tunability of a plasmonic antenna with a dielectric nanocrystal.

We show that the positioning of a nanometer length scale dielectric object, such as a diamond nanocrystal, in the vicinity of a gold bowtie nanoantenna can be used to tune the plasmonic mode spectrum on the order of a linewidth. We further show that the intrinsic luminescence of gold enhanced in the presence of nanometer-scale roughness couples efficiently to the plasmon mode and carries the same polarization anisotropy. Our findings have direct implications for cavity quantum electrodynamics related applications of hybrid antenna-emitter complexes.

[1]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[2]  Laura M Lechuga,et al.  Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates. , 2009, Optics express.

[3]  V. Dierolf,et al.  Direct near-field optical imaging of UV bowtie nanoantennas. , 2009, Optics express.

[4]  Roman Kolesov,et al.  Wave–particle duality of single surface plasmon polaritons , 2009 .

[5]  Oliver Benson,et al.  Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures. , 2011, Optics express.

[6]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[7]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[8]  Zongfu Yu,et al.  Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna , 2009 .

[9]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[10]  Thomas A. Klar,et al.  Plasmon emission in photoexcited gold nanoparticles , 2004 .

[11]  G. Schatz,et al.  Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. , 2005, The journal of physical chemistry. B.

[12]  Lukas Novotny,et al.  Continuum generation from single gold nanostructures through near-field mediated intraband transitions , 2003 .

[13]  T. Taminiau,et al.  Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency , 2008 .

[14]  Oliver Benson,et al.  Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. , 2009, Nano letters.

[15]  Urs Sennhauser,et al.  Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. , 2010, Nature communications.

[16]  Shen,et al.  Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. , 1986, Physical review. B, Condensed matter.

[17]  O. Martin,et al.  Engineering the optical response of plasmonic nanoantennas. , 2008, Optics express.

[18]  Gordon S. Kino,et al.  Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles , 2005 .

[19]  B. Liedberg,et al.  Surface plasmon resonance for gas detection and biosensing , 1983 .

[20]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[21]  George C. Schatz,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[22]  A. Otto Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection , 1968 .

[23]  Adam D. McFarland,et al.  Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity , 2003 .

[24]  Ning Gu,et al.  Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution , 2006 .

[25]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[26]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.