Optogalvanic effect in plasmas and gases
暂无分享,去创建一个
The status of optogalvanic (OG) spectroscopy, involving a change in the impedance of a gas or plasma, with tunable lasers is examined. The main advantage of this approach over the usual absorption spectroscopy is its high sensitivity. The OG effect in plasmas, glow discharges, hf discharges, hollow cathodes, obstructed discharges, neutral gases, etc., is studied. Optogalvanic studies of the spectra of both the ground and excited states of atoms and vibrational-rotational and electronic transitions in molecules, nonlinear spectroscopic phenomena, and interference of degenerate states and the use of the optogalvanic effect for stabilization of laser frequencies are described. A great deal of attention is given to the physical mechanisms involved in the formation of the OG signal. The possibilities for employing the optogalvanic effect in quantitative spectroscopy are evaluated.
[1] V. Veldhuizen. The hollow cathode glow discharge analysed by optogalvanic and other studies , 1983 .
[2] P. Avouris,et al. Laser Optogalvanic Detection of Molecular Ions , 1983 .
[3] N. B. Zorov,et al. Determination OP Picogram Concentrations of Sodium in Flame by Stepwise Photoionization of Atoms , 1979 .
[4] V. Letokhov,et al. Laser detection of single atoms , 1980 .