Toward a Genetic Dissection of Cortical Circuits in the Mouse

[1]  S. R. Cajal Textura del Sistema Nervioso del Hombre y de los Vertebrados, 1899–1904 , 2019 .

[2]  Hongkui Zeng,et al.  Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity. , 2015, Cerebral cortex.

[3]  Sten Grillner,et al.  Megascience Efforts and the Brain , 2014, Neuron.

[4]  Lief E. Fenno,et al.  Targeting cells with single vectors using multiple-feature Boolean logic , 2014, Nature Methods.

[5]  N. Kessaris,et al.  Genetic programs controlling cortical interneuron fate , 2014, Current Opinion in Neurobiology.

[6]  Hongkui Zeng,et al.  Transcriptional Regulation of Enhancers Active in Protodomains of the Developing Cerebral Cortex , 2014, Neuron.

[7]  M. Stryker,et al.  A Cortical Circuit for Gain Control by Behavioral State , 2014, Cell.

[8]  Thomas Klausberger,et al.  Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[9]  M. Crair,et al.  Role of emergent neural activity in visual map development , 2014, Current Opinion in Neurobiology.

[10]  Silvia Arber,et al.  Motor-Circuit Communication Matrix from Spinal Cord to Brainstem Neurons Revealed by Developmental Origin , 2014, Cell.

[11]  G. Fishell,et al.  Interneuron cell types are fit to function , 2014, Nature.

[12]  C. Gerfen,et al.  GENSAT BAC Cre-Recombinase Driver Lines to Study the Functional Organization of Cerebral Cortical and Basal Ganglia Circuits , 2013, Neuron.

[13]  Yves Kremer,et al.  Membrane Potential Dynamics of Neocortical Projection Neurons Driving Target-Specific Signals , 2013, Neuron.

[14]  J. Rubenstein,et al.  Fezf2 Expression Identifies a Multipotent Progenitor for Neocortical Projection Neurons, Astrocytes, and Oligodendrocytes , 2013, Neuron.

[15]  C. Doe,et al.  Temporal fate specification and neural progenitor competence during development , 2013, Nature Reviews Neuroscience.

[16]  A. Miri,et al.  Edging toward Entelechy in Motor Control , 2013, Neuron.

[17]  Henry Kennedy,et al.  Precursor Diversity and Complexity of Lineage Relationships in the Outer Subventricular Zone of the Primate , 2013, Neuron.

[18]  J. D. Macklis,et al.  Molecular logic of neocortical projection neuron specification, development and diversity , 2013, Nature Reviews Neuroscience.

[19]  Joshua I. Sanders,et al.  Cortical interneurons that specialize in disinhibitory control , 2013, Nature.

[20]  G. Fishell,et al.  A disinhibitory circuit mediates motor integration in the somatosensory cortex , 2013, Nature Neuroscience.

[21]  Z. Josh Huang,et al.  A Cortico-Hippocampal Learning Rule Shapes Inhibitory Microcircuit Activity to Enhance Hippocampal Information Flow , 2013, Neuron.

[22]  O. Marín,et al.  Integration of GABAergic Interneurons into Cortical Cell Assemblies: Lessons from Embryos and Adults , 2013, Neuron.

[23]  Michael C. Crair,et al.  Laminar and Columnar Development of Barrel Cortex Relies on Thalamocortical Neurotransmission , 2013, Neuron.

[24]  S. Robertson,et al.  Developmental origins of central norepinephrine neuron diversity , 2013, Nature Neuroscience.

[25]  Michael B. Reiser,et al.  Contributions of the 12 Neuron Classes in the Fly Lamina to Motion Vision , 2013, Neuron.

[26]  Hongkui Zeng,et al.  Genetic approaches to neural circuits in the mouse. , 2013, Annual review of neuroscience.

[27]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[28]  L. Luo,et al.  Permanent Genetic Access to Transiently Active Neurons via TRAP: Targeted Recombination in Active Populations , 2013, Neuron.

[29]  L. Luo,et al.  Linking Cell Fate, Trajectory Choice, and Target Selection: Genetic Analysis of Sema-2b in Olfactory Axon Targeting , 2013, Neuron.

[30]  Hanchuan Peng,et al.  Clonal Development and Organization of the Adult Drosophila Central Brain , 2013, Current Biology.

[31]  Sylvain Crochet,et al.  Synaptic Computation and Sensory Processing in Neocortical Layer 2/3 , 2013, Neuron.

[32]  Hani Z. Girgis,et al.  A High-Resolution Enhancer Atlas of the Developing Telencephalon , 2013, Cell.

[33]  Pedro L. López-Cruz,et al.  New insights into the classification and nomenclature of cortical GABAergic interneurons , 2013, Nature Reviews Neuroscience.

[34]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[35]  R. Tremblay,et al.  Neocortical Somatostatin-Expressing GABAergic Interneurons Disinhibit the Thalamorecipient Layer 4 , 2013, Neuron.

[36]  H. Taniguchi,et al.  The Spatial and Temporal Origin of Chandelier Cells in Mouse Neocortex , 2013, Science.

[37]  Rodney J. Douglas,et al.  Behavioral architecture of the cortical sheet , 2012, Current Biology.

[38]  J. D. Macklis,et al.  SnapShot: Cortical Development , 2012, Cell.

[39]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[40]  H. Adesnik,et al.  A neural circuit for spatial summation in visual cortex , 2012, Nature.

[41]  Allan R. Jones,et al.  An anatomically comprehensive atlas of the adult human brain transcriptome , 2012, Nature.

[42]  A. Espinosa,et al.  Fate-Restricted Neural Progenitors in the Mammalian Cerebral Cortex , 2012, Science.

[43]  Silvia Arber,et al.  Motor Circuits in Action: Specification, Connectivity, and Function , 2012, Neuron.

[44]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[45]  A. Lumsden,et al.  The role of organizers in patterning the nervous system. , 2012, Annual review of neuroscience.

[46]  C. Lois,et al.  Genetic Labeling of Neuronal Subsets through Enhancer Trapping in Mice , 2012, PloS one.

[47]  T. Kita,et al.  The Subthalamic Nucleus Is One of Multiple Innervation Sites for Long-Range Corticofugal Axons: A Single-Axon Tracing Study in the Rat , 2012, The Journal of Neuroscience.

[48]  J. Rossier,et al.  Characterization of Type I and Type II nNOS-Expressing Interneurons in the Barrel Cortex of Mouse , 2012, Front. Neural Circuits.

[49]  Ian R. Wickersham,et al.  Hierarchical Connectivity and Connection-Specific Dynamics in the Corticospinal–Corticostriatal Microcircuit in Mouse Motor Cortex , 2012, The Journal of Neuroscience.

[50]  S. Anderson,et al.  Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence. , 2012, Cerebral cortex.

[51]  Kevin L. Briggman,et al.  Structural neurobiology: missing link to a mechanistic understanding of neural computation , 2012, Nature Reviews Neuroscience.

[52]  F. Karube,et al.  Specialized Cortical Subnetworks Differentially Connect Frontal Cortex to Parahippocampal Areas , 2012, The Journal of Neuroscience.

[53]  Tarik F Haydar,et al.  The (not necessarily) convoluted role of basal radial glia in cortical neurogenesis. , 2012, Cerebral cortex.

[54]  Tzumin Lee,et al.  Generating neuronal diversity in the Drosophila central nervous system , 2012, Developmental dynamics : an official publication of the American Association of Anatomists.

[55]  John S. Kelly,et al.  Motor Neurons and the Sense of Place , 2011, Neuron.

[56]  S. Anderson,et al.  Clonal Production and Organization of Inhibitory Interneurons in the Neocortex , 2011, Science.

[57]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[58]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[59]  W. His Unsere Korperform Und Das Physiologische Problem Ihrer Entstehung: Briefe an Einen Befreundeten Naturforscher , 2011 .

[60]  Chris J. McBain,et al.  A Blueprint for the Spatiotemporal Origins of Mouse Hippocampal Interneuron Diversity , 2011, The Journal of Neuroscience.

[61]  A. Joyner,et al.  Ascl1 Genetics Reveals Insights into Cerebellum Local Circuit Assembly , 2011, The Journal of Neuroscience.

[62]  William A. Alaynick,et al.  SnapShot: Spinal Cord Development , 2011, Cell.

[63]  A. Kriegstein,et al.  Development and Evolution of the Human Neocortex , 2011, Cell.

[64]  G. Fishell,et al.  Mechanisms of inhibition within the telencephalon: "where the wild things are". , 2011, Annual review of neuroscience.

[65]  B. Sakmann,et al.  Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch , 2011, Proceedings of the National Academy of Sciences.

[66]  J. D. Macklis,et al.  Development, specification, and diversity of callosal projection neurons , 2011, Trends in Neurosciences.

[67]  Guan-Yu Chen,et al.  Three-Dimensional Reconstruction of Brain-wide Wiring Networks in Drosophila at Single-Cell Resolution , 2011, Current Biology.

[68]  F. Karube,et al.  Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. , 2011, Cerebral cortex.

[69]  G. Fishell,et al.  The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors , 2010, The Journal of Neuroscience.

[70]  J. Rubenstein The generation of cortical interneurons , 2010 .

[71]  A. Kriegstein,et al.  Developmental genetics of vertebrate glial–cell specification , 2010, Nature.

[72]  G. Fishell,et al.  Sonic hedgehog functions through dynamic changes in temporal competence in the developing forebrain. , 2010, Current opinion in genetics & development.

[73]  Tzumin Lee,et al.  A Complete Developmental Sequence of a Drosophila Neuronal Lineage as Revealed by Twin-Spot MARCM , 2010, PLoS biology.

[74]  Hanno S Meyer,et al.  Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. , 2010, Cerebral cortex.

[75]  Yasunori Murakami,et al.  Mapping the face in the somatosensory brainstem , 2010, Nature Reviews Neuroscience.

[76]  A. Kriegstein,et al.  Neurogenic radial glia in the outer subventricular zone of human neocortex , 2010, Nature.

[77]  P. Arlotta,et al.  Untangling the cortex: Advances in understanding specification and differentiation of corticospinal motor neurons , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[78]  E. Callaway,et al.  Immunochemical characterization of inhibitory mouse cortical neurons: Three chemically distinct classes of inhibitory cells , 2010, The Journal of comparative neurology.

[79]  S. Brenner Sequences and consequences , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[80]  S. Grillner,et al.  Measured motion: searching for simplicity in spinal locomotor networks , 2009, Current Opinion in Neurobiology.

[81]  K. Svoboda,et al.  Reverse engineering the mouse brain , 2009, Nature.

[82]  P. Rakic Evolution of the neocortex: a perspective from developmental biology , 2009, Nature Reviews Neuroscience.

[83]  P. Arlotta,et al.  Novel Subtype-Specific Genes Identify Distinct Subpopulations of Callosal Projection Neurons , 2009, The Journal of Neuroscience.

[84]  Wade G. Regehr,et al.  Linking Genetically Defined Neurons to Behavior through a Broadly Applicable Silencing Allele , 2009, Neuron.

[85]  I. Cobos,et al.  Dlx1&2 and Mash1 transcription factors control MGE and CGE patterning and differentiation through parallel and overlapping pathways. , 2009, Cerebral cortex.

[86]  M. Goulding Circuits controlling vertebrate locomotion: moving in a new direction , 2009, Nature Reviews Neuroscience.

[87]  Arnold Kriegstein,et al.  The glial nature of embryonic and adult neural stem cells. , 2009, Annual review of neuroscience.

[88]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[89]  P. Rakic,et al.  Decision by division: making cortical maps , 2009, Trends in Neurosciences.

[90]  Tzumin Lee,et al.  Twin-Spot MARCM to reveal developmental origin and identity of neurons , 2009, Nature Neuroscience.

[91]  S. Hestrin,et al.  Intracortical circuits of pyramidal neurons reflect their long-range axonal targets , 2009, Nature.

[92]  Gord Fishell,et al.  The genetics of early telencephalon patterning: some assembly required , 2008, Nature Reviews Neuroscience.

[93]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[94]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[95]  Quanxin Wang,et al.  Multiple Distinct Subtypes of GABAergic Neurons in Mouse Visual Cortex Identified by Triple Immunostaining , 2007, Frontiers in neuroanatomy.

[96]  Leah Krubitzer,et al.  The Magnificent Compromise: Cortical Field Evolution in Mammals , 2007, Neuron.

[97]  Shen-Ju Chou,et al.  Area Patterning of the Mammalian Cortex , 2007, Neuron.

[98]  Matthew Grist,et al.  Spatial Genetic Patterning of the Embryonic Neuroepithelium Generates GABAergic Interneuron Diversity in the Adult Cortex , 2007, The Journal of Neuroscience.

[99]  Cpj de Kock,et al.  Reconstruction of an average cortical column in silico , 2007, Brain Research Reviews.

[100]  O. Marín,et al.  Delineation of Multiple Subpallial Progenitor Domains by the Combinatorial Expression of Transcriptional Codes , 2007, The Journal of Neuroscience.

[101]  Z. J. Huang,et al.  Development of GABA innervation in the cerebral and cerebellar cortices , 2007, Nature Reviews Neuroscience.

[102]  G. Miyoshi,et al.  Physiologically Distinct Temporal Cohorts of Cortical Interneurons Arise from Telencephalic Olig2-Expressing Precursors , 2007, The Journal of Neuroscience.

[103]  P. Arlotta,et al.  Neuronal subtype specification in the cerebral cortex , 2007, Nature Reviews Neuroscience.

[104]  Sten Grillner,et al.  Biological Pattern Generation: The Cellular and Computational Logic of Networks in Motion , 2006, Neuron.

[105]  A. Kriegstein,et al.  Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion , 2006, Nature Reviews Neuroscience.

[106]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[107]  L. Swanson,et al.  Anatomy of the soul as reflected in the cerebral hemispheres: Neural circuits underlying voluntary control of basic motivated behaviors , 2005, The Journal of comparative neurology.

[108]  M. Sur,et al.  Patterning and Plasticity of the Cerebral Cortex , 2005, Science.

[109]  Fiona E. N. LeBeau,et al.  Microcircuits in action – from CPGs to neocortex , 2005, Trends in Neurosciences.

[110]  F. Fujiyama,et al.  Demonstration of long‐range GABAergic connections distributed throughout the mouse neocortex , 2005, The European journal of neuroscience.

[111]  E. Callaway,et al.  Excitatory cortical neurons form fine-scale functional networks , 2005, Nature.

[112]  Paola Arlotta,et al.  Neuronal Subtype-Specific Genes that Control Corticospinal Motor Neuron Development In Vivo , 2005, Neuron.

[113]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[114]  Richard C Gerkin,et al.  Alteration of Neuronal Firing Properties after In Vivo Experience in a FosGFP Transgenic Mouse , 2004, The Journal of Neuroscience.

[115]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[116]  G. Buzsáki,et al.  Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons , 2004, Trends in Neurosciences.

[117]  Winfried Denk,et al.  Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[118]  A. Kriegstein,et al.  Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases , 2004, Nature Neuroscience.

[119]  Richard Miles,et al.  Interneuron Diversity series: Fast in, fast out – temporal and spatial signal processing in hippocampal interneurons , 2004, Trends in Neurosciences.

[120]  S. Grillner The motor infrastructure: from ion channels to neuronal networks , 2003, Nature Reviews Neuroscience.

[121]  G. Fishell,et al.  The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations , 2002, Nature Neuroscience.

[122]  I. Katona,et al.  In Vivo Labeling of Parvalbumin-Positive Interneurons and Analysis of Electrical Coupling in Identified Neurons , 2002, The Journal of Neuroscience.

[123]  O. Marín,et al.  A long, remarkable journey: Tangential migration in the telencephalon , 2001, Nature Reviews Neuroscience.

[124]  T. Weissman,et al.  Neurons derived from radial glial cells establish radial units in neocortex , 2001, Nature.

[125]  T. Jessell Neuronal specification in the spinal cord: inductive signals and transcriptional codes , 2000, Nature Reviews Genetics.

[126]  J. Rubenstein,et al.  Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx‐2, Emx‐1, Nkx‐2.1, Pax‐6, and Tbr‐1 , 2000, The Journal of comparative neurology.

[127]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[128]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[129]  Leyuan Shi,et al.  Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. , 1997, Science.

[130]  M. Nieto Molecular Biology of Axon Guidance , 1996, Neuron.

[131]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[132]  L. Hartwell,et al.  Twenty-five years of cell cycle genetics. , 1991, Genetics.

[133]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[134]  C. Nüsslein-Volhard,et al.  Mutations affecting segment number and polarity in Drosophila , 1980, Nature.

[135]  P. Somogyi A specific ‘axo-axonal’ interneuron in the visual cortex of the rat , 1977, Brain Research.

[136]  S. Benzer,et al.  Genetic dissection of the Drosophila nervous system by means of mosaics. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[137]  S. Benzer BEHAVIORAL MUTANTS OF Drosophila ISOLATED BY COUNTERCURRENT DISTRIBUTION. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[138]  R. Sidman,et al.  Autoradiographic Study of Cell Migration during Histogenesis of Cerebral Cortex in the Mouse , 1961, Nature.

[139]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[140]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[141]  John L.R. Rubenstein,et al.  Patterning and Cell Type Specification in the Developing CNS and PNS , 2013 .

[142]  R. Lorente ARCHITECTONICS AND STRUCTURE OF T H E CEREBRAL CORTEX , 2012 .

[143]  M. Avoli,et al.  The Generation of Cortical Interneurons -- Jasper's Basic Mechanisms of the Epilepsies , 2012 .

[144]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[145]  S. Anderson,et al.  Fate mapping Nkx2.1‐lineage cells in the mouse telencephalon , 2008, The Journal of comparative neurology.

[146]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[147]  M. Ekker,et al.  Expression from a Dlx gene enhancer marks adult mouse cortical GABAergic neurons. , 2002, Cerebral cortex.